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lntracellular Parasitism by 
Histoplasma capsulatum: Fungal 

Virulence and Calcium 
Dependence 
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Histoplasma capsulatum is an effective intracellular parasite of macrophages 
and causes the most prevalent fungal respiratory disease in the United States. 
A "dimorphic" fungus, H. capsulatum exists as a saprophytic mold in soil and 
converts to the parasitic yeast form after inhalation. Only the yeasts secrete 
a calcium-binding protein (CBP) and can grow in calcium-limiting conditions. To 
probe the relation between calcium limitation and intracellular parasitism, we 
designed a strategy to disrupt CBP7 in H. capsulatum using a telomeric linear 
plasmid and a two-step genetic selection. The resulting cbp7 yeasts no longer 
grew when deprived of calcium, and they were also unable to destroy mac- 
rophages in vitro or proliferate in a mouse model of pulmonary infection. 

Histoplasma capsulatum is a pathogenic fun- 
gus that is a major cause of respiratory and 
systemic mycosis, especially in imrnunocom- 
promised individuals (I).Histoplasmosis oc- 
curs worldwide but is endemic in the Missis- 
sippi and Ohio River valleys in the United 
States, where the organism thrives in soil in 
its mycelial (mold) form. As with most other 
dimorphic fungal pathogens, conversion to a 
unicellular haploid yeast form occurs after 
inhalation and exposure to the warmer tem- 
perature of the respiratory tract (2). There, H. 
capsulatum is readily engulfed by macro-
phages, in which the yeasts survive and pro- 
liferate within the normally hostile environ- 
ment of phagolysosomes (3). The character- 
istics of this particular intracellular compart- 
ment are poorly understood, although we 
have previously demonstrated that Histoplas-
ma-laden phagolysosomes fail to acidify (4). 
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Studies with Salmonella typhimurium, which 
also survives within phagolysosomes of mac- 
rophages, have suggested that this compart- 
ment is low in Ca2+ concentration (5). 

The latter observation may have particular 
relevance for H. capsulatum, as we have 
observed a major difference in calcium de- 
pendence between the saprophytic (mycelial) 
form and the parasitic (yeast) form. His-
toplasma capsulatum yeasts are capable of 
growing in a calcium-deprived environment 
and secrete a 7.8-kD calcium-binding protein 
(CBP); in contrast, mycelial cultures do not 
secrete CBP and require calcium for growth 
(6) .  The CBP structural gene, CBPI, has 
been cloned and sequenced, and a potential 
calcium binding site is predicted from the 
secondary structure of CBP (7). Purified CBP 
has also been shown to increase the associa- 
tion of 45CaC1, with H. capsulatum yeasts 
after they have been transferred to low-calci- 
um medium (7). To verifi the functional role 
of CBP in calcium acquisition andlor vim- 
lence, we devised a generally applicable 
gene-disruption strategy for Histoplasma: 
Linear telomeric plasmids and a two-step ge- 
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netic selection were used to inactivate the that uses a linearized telomeric vector main- chromosomeand presumably be lethal. In the 
CBPI gene by allelic replacement. This work tained extrachromosomally in high copy second step of this strategy, a positive-nega-
showed that CBP is critical for virulence and number (10, 12, 13). This telomeric plasmid tive selection was applied with hygromycin 
for calcium uptake by H. capsulatum yeasts, (pTS100) contains two selectable markers, a and 5-fluoro-orotic acid (5-FOA), which in-
suggesting that this intracellular parasite has URA5 gene located on an arm of the vector hibits the growth of uracil prototrophs. This 
evolved a means to cope effectively with a and a hygromycin-resistance cassette (hph) steprenriches for recombinants at the CBPI 
calcium-limiting environment in vivo. located within the CBPI gene (replacing a locus by simultaneously selecting for stable 

For most pathogenic fungi, classical re- portion of the coding sequence) [Web fig. 1 maintenance of the disrupted gene (contain-
combinational analysis is either impossible or 
extremely tedious (8). Transformation of H. 
capsulatum with plasmid DNA usually re-
sults in random integration of the DNA into 
the genome, of€en accompanied by tandem 
amplification and rearrangement of the trans-
forming DNA (9, 10). Illegitimate recombi-
nation events so greatly outnumber homolo-
gous recombination events that it is imprac-
tical to detect the desired gene disruption; to 
date, only the counterselectable URA5 gene 
has been success~llyknocked out in H. cap-
sulatum (11). To prevent the high frequency 
of nonhomologous recombination, we de-
signed a two-step gene-disruption strategy 

(14)] (13, 19.In the first selection step, this 
construct was used to transform a uracil 
auxotroph (16, 17) of a virulent strain of H. 
capsulatum (18). G186ARura5 (pTS100) 
transformants were initially grown on HMM 
agar (19) lacking uracil to select for yeasts 
that were maintaining the transformed DNA 
as a freely replicating linear plasmid. Six 
colony-purified yeast isolates were then inoc-
ulated into HMM broth without uracil and 
maintained for 3 weeks with regular medium 
changes. This length of time allows the de-
sired double-crossoverevent to occur; the use 
of a linear plasmid vector ensures that single 
crossovers into the genome would break the 

ing the hygromycin-resistance cassette) and 
selecting against the URA5-containing plas-
mid vector. Each of the six broth cultures was 
plated on solid medium containing hygromy-
cin and 5-FOA, and an isolated colony from 
each culture was grown in broth under the 
same selection conditions for three additional 
weeks. Total genomic DNA was prepared 
from six colony-purified putative mutants 
and used as a template for polymerase chain 
reaction (PCR) and Southern analysis (20, 
21). The results indicate that an allelic re-
placement of CBPl with cbp1::hph had oc-
curred in two out of six of the putative mu-
tants (Fig. 1). This knockout strategy was 

Fig. 1. (A) PCR was performed 
with genomic DNA isolated 
from pTSlOO transformants A B 
and from transformation re-
cipient strain C186ARura5. 
Oligonucleotide primers were 
targeted to the 5' and 3' re-
gions of CBP1: The forward 
primer spanned bases 100 to 
117 of CBPl and the reverse 
primer spanned bases 1727 
to 1747 of the CBP1 gene. A +2.8-kb from 

transformant in which ho- mutant locus 
)_native 1.8-kb 

mologous recombination had ,l.S-kb from Eco RV band
not occurred [Cl86ARura5 native locus
(pTSlOO)] showed a PCR 
product that resulted from 
retention of the telomeric 167 bp CBPl probe
plasmid (2.9 kb) and its 
native chromosomal CBPl 
locus (1.6 kb). Hygromycin-
and 5-FOA-resistant trans-
formants C186ARura5 
cbp1::hph-6 and -7 have un-
dergone an allelic replace-
ment in CBPl and therefore 
showed a single PCR product 
(2.9 kb). The recipient strain 
C186ARura5showed only an 
intact CBPl PCR product (1.6 
kb). The predicted 1.6-kb 
CBPl product was also ampli-
fied from wild-type CBPl on 
plasmid pJBP13, and a 2.9-kb 
cbp1::hph product was am-

mutant 11.5-kb 
Xho I band =+ - - - -
native 10.3-kb 
Xho I band 

plified from disruption plas-
mid pTS100. For Southern 
analysis,restriction digests of 1.3 kb CBPl  probe 
genomic DNA5 from transfor-
mants, as well as the transfor-
mation recipient strain C186ARura5, were subjected to electrophoresis, 
blotted, and hybridized with three probes: a 167-base pair (bp) fragment 
spanningthe Sma I-Msc I deletionthat was replaced by the hph cassette (B), 
a 1.3-kb fragment spanning bases 1 to 1313from CBPl (C), and a 1.0-kb 
fragment spanningbases 1 to 1023of the hph cassette (D).Hybridization of 
the CBPl probe to DNA from transformantsC186ARura5cbp1::hphd and 
-7 did not detect the native genomic CBPl but instead detected an 11.5-kb 

mutant 11.5-kb 
Xho I band -+ 

mutant 7.7-kb 
+Sal I band- - +--natlve6.6kb 
W 1 band 

mutant 7.7-kb 
CSal 1 band 

1.0 kb hph probe 

Xho I band or a 7.7-kb Sal I band (C). This same probe detected bands 
corresponding to native CBPl (a 10.3-kb Xho I fragment or a 6.5-kb Sal I 
fragment) in recipient strain G186ARura5 DNA (C),which did not hybridize 
to an hph gene probe (D). DNA from transformants 6 and 7 also did not 
hybridize to a 167-bp probe spanning the Sma IIMsc I CBPl deletion, 
whereas DNA from recipient strain C186ARura5 hybridized to this 
probe (0). 
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purified 
CBP 

t culture supernatants 

purified 
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Fig. 2. (A) Ruthenium red staining of purified CBP or culture supematant from H. capsulatum after 
SDS-PAGE and transfer to nitrocellulose. (B) 45CaCI, blot of purified CBP or culture supernatant 
after SDS-PAGE and transfer to nitrocellulose. 

Time (hours) Time (hours) 

Fig. 3. Histoplasma capsulatum cbp1::hph yeasts were grown in HMM medium in the presence or 
absence of EGTA. Metabolic activity as measured by MTT assays was used to monitor culture 
health and growth over time. (A) G186ARura5 cbp7::hph-6, -7, and G186ARura5 cbp7::hph-6 
(pTS404) exhibited growth rates similar to that of pareantal strain G186ARura5 in standard growth 
medium HMM (supplemented with uracil as needed). (B) In the presence of 150 p,M EGTA, growth 
of strains G186ARura5 cbp7::hph-6 and -7 was inhibited. The CBPI-complemented strain, 
G186ARura5 cbp7::hph-6 (pTS404), grew as well as parental strain G186ARura5 in the presence of 
EGTA. 

repeated in the same strain (G186ARura5) 
and in a genetically unrelated strain, 
G217Bura5, with the same plasmid con- 
struct. In both cases (and despite some se- 
quence heterogeneity with CBPl in strain 
G217Bura5), a similar frequency of allelic 
replacement with cbp1::hph was confirmed, 
indicating that this strategy is an efficient and 
reproducible method for gene disruption in 
H. capsulatum. 

To demonstrate that CBP from H. capsula- 
tum cbp1::hph isolates was no longer able to 
bind calcium, we prepared 45CaC1, blots (22). 
Purified CBP and CBP in culture supernatants 
from parental strain G186ARura5 bound 
45CaC4, but proteins in culture supernatants 

from H. capsulatum G186ARura5 cbpl::hph-6 
and -7 did not bind (Fig. 2). These results were 
confirmed by Ruthenium red staining for calci- 
um-binding proteins (22, 23): Although CBP 
could be detected in strain G186ARura5 cul- 
ture supernatant, filtrat& from cbp1::hph iso- 
lates had no detectable CBP (Fig. 2). Growth 
of cbpl-knockout yeasts in medium deprived 
of calcium was measured metabolically over 
time by monitoring reduction of 3-[4,5 di- 
methylthiazol-2-yl]-2,5-diphenyltetrazolium 
bromide (MTT) (24, 25). The parent strain 
G186ARura5 grew well under all conditions 
tested; however, isolates disrupted in CBPI 
were unable to grow in calcium-limited me- 
dium (Fig. 3). 

To confirm that the phenotypes associated 
with the cbpl-knockouts are the result of the 
targeted'mutation, we constructed an isogenic 
strain that contains CBPl in trans. The plas- 
mid, pTS404, was designed in the same man- 
ner as pTSlOO [Web fig. 1 (14)], including 
5'- and 3'-untranslated regions flanking the 
intact CBPl gene. The complementation 
plasmid also included the Podospora U . 5  
gene and contained telomeric repeats for sta- 
ble maintenance in Histoplasma. This plas- 
mid was introduced by electrotransformation, 
and its extrachromosomal replication was 
subsequently confirmed by Southern blot 
analysis (26). The complemented strain 
G186ARura5 cbp1::hph-6 (pTS404) re- 
gained the ability to secrete CBP in quantities 
comparable to that secreted by wild-type 
yeasts (Fig. 2). Introduction of CBPl in trans 
also restored this knockout strain's ability to 
grow in media deprived of calcium by EGTA 
(Fig. 3). 

Because H. capsulatum yeasts are normally 
capable of proliferating in and destroying mac- 
rophages, we have developed a quantitative in 
vitro macrophage model for virulence that uses 
P388D1 .D2 cells (a macrophage-like cell line) 
(3, 27). This assay is based on the relative 
ability of a defined number of yeasts to kill 
macrophages in a given period of time (27). 
Strain-specific differences in the ability to kill 
P388Dl.D2 cells correlate with virulence as 
measured in standard animal models of his- 
toplasmosis. In its current version, this in vitro 
assay measures the amount of macrophage 
DNA remaining in a monolayer after infection 
by H. capsulatum yeasts (28), using an ultra- 
sensitive fluorescent stain specific for double- 
stranded DNA. The cbpl-knockout strain was 
unable to destroy P388Dl.D2 cells after 7 to 10 
days of infection, whereas the parental strain 
G186ARura5 did. Complementation of this 
cbpl-knockout strain with CBPl in trans re- 
stored virulence to a level similar to that of the 
parent strain (Fig. 4A). Phenotypic complemen- 
tation was not achieved with pTSlO5 (26), 
which is an identical plasrnid contruct except 
for a short deletion within the CBPI coding 
sequence [Web fig. 1 (1411. 

Because CBP proved to be vital for His- 
toplasma pathogenesis in macrophages, we 
evaluated the virulence of a cbpl-null ,strain of 
H. capsulatum in a murine model of respiratory 
infection (29). Mice, like many other mammals, 
are natural hosts for H. capsulatum, and the 
progression of pathology, dissemination, and 
immunity closely parallels human histoplasmo- 
sis (30). For animal infections, mice were inoc- 
ulated intranasally with the H. capsulatum 
strains indicated in Fig. 4B. After 8 days, the 
lungs were removed to count the number of 
viable H. capsulatum yeasts. The number of 
G186ARura5 (pWU55) yeasts recovered from 
the lungs was more than 10-fold higher than the 
number administered intranasally 8 days earli- 
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Fig. 4. (A) Eight days after inoculation of macrophages with H. capsu- 
latum, the host cells were lysed and then fluorescently quantitated for 
dsDNA. Macrophages infected with the avirulent C186ASura5 strain or 
the cbpl-knockout strains (G186ARura5 cbp1:;hph-6 and -7) were not 
killed and therefore showed similar levels of relative fluorescent units 
(rfu). A cbpl-knockout strain complemented with wild-type CBPl 
[Gl86ARura5 cbp1::hph-6 (pTS404)I was virulent for macrophages, 
yielding results comparable to those for infection with the G186ARura5 
parental strain. Data shown are representative of three experiments 
and are expressed as the mean + SE. (B) In this mouse model of 
pulmonary colonization, relative virulence of each strain can be evalu- 
ated by comparing the mean colony-forming units (CFU) inoculated 
intranasally and later recovered from mice at 8 days after infection. 

Lung colonization 
al B days 

Data are representative of two experiments and are expressed as the 
mean t SE per lung. The telomeric plasmid pWU55, which contains 
URA5, was transformed into strains C186ARura5 and C186ARura5 
cbp1;;hph-6 to restore uracil prototrophy, which is required for virulence 
in vivo (32). 

er. Disrupting CBPl in G 186ARura5 rendered 
these yeasts unrecoverable from lung tissue, 
except when the infecting dose was increased 
more than 1000-fold; even then, the number of 
yeasts recovered from the lung was greatly 
reduced from the original intranasal inoculum. 
These results do not reflect a simple growth 
defect in the cbpl-null strain, because all strains 
tested in mice have a similar generation time 
when grown in broth culture (26). When the 
cbpl-knockout strain was complemented by 
addition of CBPl in trans, pulmonary coloni- 
zation by the yeasts was restored to a level 
comparable to that of the virulent G186ARura5 
(pWU55) strain. 

In summary, CBP was indispensible for 
the virulence of H. capstrlattrm yeasts in vitro 
and in vivo, as well as for the growth of H. 
capsulatum in limiting calcium conditions. 
How CBP links both of these phenotypes 
remains unknown, but the simplest hypothe- 
sis is that calcium acquisition is an important 
strategy for microbial survival in this intra- 
cellular compartment. Alternatively, CBP 
may bind calcium in order to modulate 
phagolysosomal conditions that might other- 
wise inhibit yeast survival. For example, che- 
lation of calcium could restrict the destructive 
power of some lysosomal enzymes, and a 
recent report shows that limiting calcium dur- 
ing formation of endosomes inhibits their 
normal acidification (31). This correlates 
with the failure of phagosomes containing 
Histoplasma to acidify (4), potentially point- 
ing to a mechanism of avoiding intracellular 
destruction by lysosomal enzymes that typi- 
cally have a low pK. 

This study also presents a formal genetic 
proof of a virulence determinant in H. cap- 
sulatum. This gene-targeting strategy should 

be generally applicable to probing gene func- 
tion in H. capsulatum and other closely relat- 
ed dimorphic fungal pathogens, which have 
similar problems in genetic manipulation that 
pose formidable barriers in testing the roles 
of putative virulence factors. 
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