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Fig. 3. Relative stability of experimental pred- 
ator-prey chemostat cultures. Coefficient of 
variation (23) of time series (day 20 to end of 
trial) for all chemostat trials at N, = 80 pmoll  
liter. Low CV indicates populations at equilib- 
rium (CV > 0 because of noise), high CV indi- 
cates fluctuating populations. Brachionus caly- 
ciflorus (predator, black symbols) and C. vul-
garis (prey, open symbols). 

plains the overall dynamical behavior of the 
nitrogen-Chlorella-Brachionussystem; a sim- 
ple laboratory culture system containing popu- 
lations of real predators and prey exhibits the 
oscillatory dynamics predicted by a mathemat- 
ical model. This model is of the same type that 
has led theoreticians to posit that fluctuations in 
natural populations may be internally driven 
(24). However, the model does not correctly 
predict some of the quantitative characteristics: 
the observed cycle periods are too long, and the 
positions of the predator minima and prey 
maxima are too close together relative to 
prediction. This suggests that some addi-
tional mechanism, not represented in our 
model (e.g., variable algal quality), comes 
into play only when the populations are 
undergoing large-amplitude cycles. 

The rotifer-algal chemostat system has al- 
lowed us to study the conditions under which 
predator-prey cycles arise. It now provides an 
opportunity to explore the occurrence of 
more complex dynamics such as determinis- 
tic chaos (20-22), cyclic predator-prey co-
evolution (25),  and evolutionary responses 
that might reduce the likelihood of complex 
dynamics (26). 
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Coherence and Conservation 
David J. D. Earn,'* Simon A. ~evin,' Pejman Rohani3 

A principal aim of current conservation policy is t o  reduce the impact of habitat 
fragmentation. Conservation corridors may achieve this goal by facilitating 
movement among isolated patches, but there is a risk that increased connec- 
t iv i ty could synchronize local population fluctuations (causing coherent oscil- 
lations) and thereby increase the danger of global extinction. We identify 
general conditions under which populations can or cannot undergo coherent 
oscillations, and we relate these conditions t o  local and global extinction 
probabilities. We suggest a simple method t o  explore the potential success of 
conservation corridors and, more generally, any manipulations of dispersal 
patterns that aim t o  protect threatened species or control pests. 

There is growing concern about the adverse 
effects of habitat fragmentation on the long- 
term viability of endangered species (I). 
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Many studies attempt to evaluate the effects 
of past actions, to predict the outcomes of 
further fragmentation, and to promote conser- 
vation measures (2, 3). 

A critical issue that is often emphasized is 
synchrony of population dynamics in differ- 
ent habitat patches (4-9). If a population 
goes extinct in one patch while other patches 
retain substantial numbers, the classical "res- 
cue effect" can prevent global extinction ( 7 ) .  
However, if extinction occurs in all patches 
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simultaneously, then "rescue" is impossible. 
Consequently, spatial coherence (synchrony) 
of population dynamics may be dangerous for 
species that we wish to conserve. 

A strategy that is the source of continuous 
debate is the preservation or construction of 
"conservation corridors," i.e., pathways that 
make it possible (or easier) for individuals to 
move among habitat patches (I 0, I I). Com- 
dors may have the desired effect of promot- 
ing rescues. Unfortunately, they may instead 
have the undesired effect of synchronizing 
periods of low population density in different 
patches, making the population as a whole 
more susceptible to "bad years," demograph- 
ic stochasticity, and Allee effects (12, 13). 
The long-term effects of conservation com- 
dors are therefore uncertain. 

Here, we describe a way to make quanti- 
tative predictions about the success of con- 
servation corridors and, more generally, pol- 
icies that affect movement patterns of endan- 
gered species. For any given dispersal behav- 
ior, we can determine the likelihood of 
synchronous fluctuations in species abun- 
dances and the corresponding probabilities of 
local and global extinction. We illustrate our 
results using a simple spatial population mod- 
el and then explain general coherence criteria 
that can be applied to realistic models and 
real ecological systems. 

Our illustrative model (14) consists of a 
single species with discrete generations and 
10 suitable habitat patches. Within each 
patch, reproduction is density-dependent, and 
the maximum fecundity in any generation is r 
[specifically, the reproduction function is the 
logistic map (14)l. A fraction m of individu- 
als migrates before reproducing. We consider 
two patterns of migration: equal coupling 
(i.e., dispersing individuals are equally likely 
to move to any of the other patches) and 
nearest neighbor coupling (i.e., dipersers 
move only to adjacent patches). Realistic dis- 
persal patterns (15) typically lie somewhere 
between these extremes. 

We first examine when coherent oscillations 
(16) are impossible, possible, or inevitable for 
our illustrative logistic metapopulation. In Fig. 
1, if the reproductive and dispersal rates (r, m) 
lie inside the blue "coherence impossibility re- 
gion," then coherent oscillations will never oc- 
cur; even the slightest perturbation from coher- 
ence will grow and the system will become 
incoherent (different patches will settle on dif- 
ferent sequences of population densities). Out- 
side the blue region, sufficiently small pertur- 
bations will not disrupt coherent oscillations. If 
(r, m) lies in the red "coherence inevitability 
region," then coherence is unavoidable. If (r, m) 
lies in the unshaded region (neither blue nor 
red), then coherent oscillations may or may not 
occur, depending on the initial state. Because 
the coherence regions are very &%rent in the 
two panels of Fig. 1, it is clear that quantify- 

ing the dispersal pattern is crucial when esti- 
mating the susceptibility of a system to co- 
herent oscillations (and, in turn, the effects of 
a network of comdors on extinction proba- 
bilities). The blue and red regions can be 
estimated with numerical simulations; we de- 
termined them exactly from analytical crite- 
ria, which we describe below. 

On each panel of Fig. 1, we superimposed 
the bifurcation diagram for the logistic map, 
which summarizes the single-patch dynamics 
as a function of fecundity (e.g., a single point 
above a given r value indicates abundance is 
in equilibrium, two points indicate alternating 
highs and lows, and a broad band of points 
indicates chaos). This bifurcation diagram 
shows that for our illustrative model, coher- 
ence is always possible in the nonchaotic 
regime (the probability of coherence may be 
small, but it is never strictly zero if r 5 
3.57). 

Between the extremes of impossibility 
and inevitability, coherent dynamics occur 
with some nonzero probability, which is a 
function of both r and m. The top two panels 
of Fig. 2 show the probability that the dy- 
namics are coherent to within 10% after 10 
years (starting from random initial condi- 
tions). The risk of coherence is typically larg- 
er for smaller r and larger m, but the details 
depend on the dispersal pattern. Real systems 
are always subject to demographic and envi- 
ronmental stochasticity. Extensive simula- 
tions (1 7) show that moderate levels of sto- 
chasticity do not substantially affect the prob- 
ability of spatial coherence. In particular, the 
center and bottom panels of Fig. 2 show that 
our calculations of coherence probabilities 

are robust to variance in patch quality and to 
local environmental noise. 

When coherent oscillations are improba- 
ble, global extinction is less likely than ex- 
tinctions in individual patches. Figure 3 ver- 
ifies this for our illustrative logistic meta- 
population in the presence of global noise 
(randomly occurring events that affect all 
patches equally). Extinction probabilities are 
given by the frequency of zero population 
size (18). After local extinctions, dispersal 
from other patches leads to colonization of 
empty patches. 

Drops in the global extinction rate (com- 
pared with the local extinction rate) corre- 
spond closely to drops in the probability of 
coherence (green in Fig. 3) and not to the 
transition from regular to chaotic dynamics. 
Thus, persistence is determined principally 
by susceptibility to coherence rather than by 
the nature of the dynamics (nonchaotic or 
chaotic). Theoretical population ecologists 
have sought to find a link between chaos and 
population persistence (19, 20). Our results 
show that there is nothing special about chaos 
in this respect: Low probabilities of coher- 
ence (and hence global extinction) can occur 
when the single-patch dynamics are very sim- 
ple. The global extinction probability is gen- 
erally lower if there is a wide range of pos- 
sible population densities; this occurs in the 
chaotic regime for the logistic map but is not 
a general feature of chaos (21). 

Our results for the logistic metapopulation 
model can be derived from analytical criteria 
that apply generally (not just to this specific 
example). The criteria can be formulated in 
terms of three ecologically determined quan- 

N w &  nelghbor coupling - " " ' I ' l I I I I I I  

O ! J 1 l l ' t l * l ' t l 2 3 
Maximum fecundity r Maximum tecundlty r 

Fig. 1. Possibility and inevitability of coherence in a simple metapopulation model (10 coupled 
logistic maps) as functions of maximum fecundity ( r )  and the fraction of the population that 
disperses (m). The graphs are superimposed on the bifurcation diagram for the logistic map to 
emphasize the underlying dynamics of the single-patch map. In each panel, the coherence 
impossibility region is shaded in blue (coherent oscillations are impossible within it and possible 
outside it). The boundary is derived in each case from criterion 1; for equal coupling (left), h = 1 - 
[nl(n - l)]m, whereas for nearest neighbor coupling on a ring (right) h = 1 - [I - cos(2~ln)]m. 
The lack of smoothness of the boundary of the blue region arises because coherence is stable locally 
(in phase space) in all of the periodic windows of the logistic map. The coherence inevitability 
region derived from criterion 3 is shaded in red. Inside this region, coherent oscillations are 
inevitable, regardless of initial conditions. Between the blue region and the red region, coherent 
oscillations may or may not occur (see Fig. 2). 
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tities: (i) A, a statistic that, characterizes the Equal coupling Nearest neighbor coupling 
influence of the dispersal pattern on the sus- 
ceptibility of the system to coherent oscilla- 
tions. In our illustrative example, A is a func- 
tion of two ingredients, the proportion of 
individuals that disperse (rn) aid the type of 
coupling (equal or nearest neighbor). Techni- 
cally, A is the subdominant eigenvalue (22) of 2 . t b o 2 0.4 0.6 

2 5 

3 3.5 4 O 0 2  0.4 0.6 0.8 the dispersal matrix (15). (ii) p, a measure of r 4 0  m m 
the average reproductive rate within a patch. 
Technically, p is the Lyapunov exponent 
(23) associated with a single patch. This I 
number has been proposed as a formal defi- c, 
nition of fitness (24). (iii) r, the maximum ,O 0.5 
fecundity or maximum reproductive rate b 

within a patch. The analytical criteria (25) are 1 2,t 
the following. If n e 

e"lAI < 1 (1) 

then coherent oscillations are possible. If 

e"lAI > 1 (2) 1 

then coherent oscillations will never occur. 
Finally, if 0.5 0.5 

rlAl < 1  (3) 

then coherent oscillations are inevitable, re- 
gardless of the initial state of the system. In 
Fig. 1, the (blue) coherence impossibility re- 
gion is determined by condition 2, whereas 
the (red) coherence inevitability region is de- 
termined by condition 3. 

In the past, a few special cases of the local 
criterion 1 have been obtained for specific 
models (26-30). Criteria 1 and 2 generalize 
these previous results, providing conditions 
that are much more useful because they are 
model independent. However, as the logistic 
metapopulation example showed, formal lo- 
cal stability of coherence is not sufficient to 
guarantee coherence in practice; the probabil- 
ity of coherence is often negligible in param- 
eter regions where coherence is technically 
locally stable. This highlights the importance 
of the global criterion 3; if condition 3 is 
satisfied, then coherence is inevitable and 
substantial extinction risk may be unavoid- 
able. As far as we are aware, this global 
condition has never been stated previously, 
even for a specific model. 

We emphasize that the "logistic meta- 
population model" that we used for the figures 
is merely an illustrative example (31). Our der- 
ivations (25) of criteria 1,2, and 3 apply equally 
well to reproduction functions other than the 
logistic, including those that incorporate an 
Allee effect (12, 13), and the approach can be 
used for organisms that reproduce continuous- 
ly. It also applies to multispecies interactions, 
situations where there are time delays (due to 
age or stage structure, for example), and sys- 
tems that are subject to seasonal forcing or 
other explicitly timedependent external factors 
(32). For such systems, p and r must be gen- 
eralized (32), but the forms of criteria 1,2, and 
3 are unchanged. 

Fig. 2. Risk of coherence. In each panel, the height of the surface gives the probability of coherence 
to within 10% after 10 iterations of the logistic metapopulation model, based on a random sample 
of 10,000 initial conditions for each pair of parameter values (r, m).  We use a crude definition of 
coherence (10%) and a rapid time to coherence (10 years) because such crude measures would 
have to be applied to real systems. The probability surfaces are similar if we require coherence to 
within 1% after 100 or 1000 iterations, indicating that relaxation to coherence is not substantially 
affected by supertransient behavior (43). The two center panels explore the effects of variance in 
patch quality: The maximum fecundity is different in each patch [r, = r X (1 + a,), where a, E 
(-0.05, -0.04, . . ., 0.05)]. The bottom two panels explore the effects of local environmental 
noise: Each year the maximum fecundity in patch i is rif = r x (1 + zt), where zt is normally 
distributed with mean zero and standard deviation 0.025. In both the center and bottom panels, the 
level of patch variance or stochasticity is large relative to our coherence threshold of lo%, showing 
that our results are robust to these factors. 

We noted for the logistic metapopulation 
that coherence is always possible (although 
not necessarily very likely) in the nonchaotic 
regime. In fact, it is true in general that 
coherent fluctuations in abundance are al- 
ways possible if the underlying single-patch 
dynamics are equilibrial, cyclical, or quasi- 
periodic (33). 

Any given model has associated values of 
A, p, and r, which can be inserted in our 
coherence criteria. Moreover, empirical esti-. 
mates of A, p, and r can be used in these 
criteria without reference to any specific 
model. Thus, conditions 1, 2, and 3 can be 
used directly to evaluate ecological data. 

To make direct use of criteria 1,2, and 3 in 
a given conservation setting, we need estimates 
.of p and r and, most crucially, the dispersal 
pattern, from which we can compute A. These 
numbers will always be difficult to determine 
from field data (34, 35), but, fortunately, esti- 
mating them does not require us to tie ourselves 
to any particular model. To evaluate the impact 
of a network of conservation corridors, we need 

to estimate the difference in A with and without 
the corridors. This difference in A translates, 
through criteria 1,2, and 3,'into a difference in 
susceptibility to coherent oscillations (which in 
turn influences the danger of global extinction). 

We suggest that estimating changes in A due 
to conservation measures will be useful even if 
p and r cannot be reliably determined from 
existing data; such estimates could form a valu- 
able component of qualitative assessments of 
conservation proposals. If the difference in A 
that can be achieved is relativelv small. then the 
contribution of rescue effects to extinction 
probabilities will generally not be strongly af- 
fected (36). This rough assessment based on 
analytical criteria can always be supplemented 
by detailed investigation of extinction probabil- 
ities in a variety of realistic models, with the 
simple numerical technique (18) that' we ap- 
plied to produce Fig. 3; extinction probabilities 
in such models should be computed for the 
range of A that the conservation measures can 
conceivably induce. 

The coherence criteria we have discussed 
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Maximum fecundity r Maximum faundlty r 

Fig. 3. Risk of extinction. Local and global extinction probabilities in the logistic metapopulation 
model (with equal coupling). Each panel corresponds to  a different fraction, m, of dispersing 
individuals. (A) m = 0.001, (B) m = 0.1, (C) m = 0.2, and (D) m = 0.5. Local (blue) and global 
(red) extinction probabilities are shown as functions of the maximum fecundity r. As in Fig. 1, the 
graphs are superimposed on the bifurcation diagram for the logistic map. The local extinction 
probability increases with r because oscillations in abundance increase in amplitude as r increases. 
Where the blue and red curves do not overlap, global extinction is less likely than local extinction 
in individual patches. For sufficiently small dispersal fractions, there is always (at least a small) 
difference between local and global extinction probabilities (because the basin of attraction of the 
coherent attractor does not encompass all initial conditions). For sufficiently large dispersal 
fractions, local and global extinction probabilities are the same for all initial conditions, regardless 
of the value of r. In each panel, the green curve (corresponding to a slice of the top left panel of 
Fig. 2) gives the probability of coherence. A substantial difference between local and global 
extinction probabilities occurs only when the probability of coherence is small. 

can be applied equally well if we wish to 
exterminate rather than preserve a species; in 
such cases, it would be advantageous to pro- 
mote rather than prevent synchrony (8). Our 
results can thus be used to develop improved 
methods for controlling or eradicating intro- 
duced species. In the case of human infec- 
tious diseases (37, 38), vaccination cam- 
paigns have had a dramatic effect on the 
spatial synchrony of epidemics (8, 9); condi- 
tions such as criterion 3 may allow us to 
identity immunization strategies that syn- 
chronize epidemics and thereby increase the 
probability of global eradication. 

References and Notes 
1. 5. L. Pimm, Nature 393. 23 (1998). 
2. W. F. Laurance. R. 0. Bierregaard Jr., Eds., Tropical 

Forest Remnants: Ecology, Management, and Conser- 
vation of Fragmented Communities (Univ. of Chicago 
Press, Chicago. 1997). 

3. 1. A. Hanski. M. E. Gilpin, Eds., Metapopulation Biolo- 
gy: Ecology, Genetics, and Evolution (Academic Press, 
San Diego. CA, 1997); 1. Hanski, 0. Ovaskainen. Na- 
ture 404, 755 (2000). 

4. R. Levins, Bull. Entomol. Soc. Am. 15, 237 (1969). 
5. J. H. Brown, A. Kodric-Brown. Ecology 58,445 (1977). 
6. M. Heino, V. Kaitala. E. Ranta, J. Lindstrom, Proc. R. 

Soc. London Ser. B 264,481 (1997). 
7. B. Blasius, A. Huppert, L. Stone, Nature 399, 354 

(1 999). 
8. D. J. D. Earn, P. Rohani, B. T. Grenfell. Proc. R. Soc. 

London Ser. B 265, 7 (1998). 
9. P. Rohani, D. J. D. Earn, 8. T. Grenfell, Science 286, 

968 (1999). 
10. P. Beier, R. F. Noss, Conserv. Biol. 12. 1241 (1998). 
11. A. Gonzalez, J. H. Lawton. F. 5. Gilbert. T. M. Black- 

burn. I. Evans Freke, Science 281, 2045 (1998). 

12. F. Courcharnp. T. Clutton-Brock. 0. Grenfell. Trends 
Ecol. Evol. 14, 405 (1999). 

13. P. A. Stephens, W. J. Sutherland, Trends Ecol. Evol. 14, 
401 (1999). 

14. The simplest population models predict total popu- 
lation density at discrete time intervals. The densities 
of individuals in successive generations ( t  = 0. 1. 
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Xt+l = F(xt) (4) 

where xt denotes the population density at time t. 
The spatial distribution of many species can be rep- 
resented as a metapopulation, i.e., a network of 
relatively isolated local patches, within which indi- 
viduals reproduce and among which some individuals 
disperse (3). The example emphasized in the main 
text is a single-species metapopulation model. If the 
population density in patch i at time t is xf, then the 
dynamical equations are 

,=1 

where mu is the proportion of individuals from patch 
j that disperse to patch i, n is the number of patches. 
and F is the reproduction function as in Eq. 4. M = 
(mu) is the dispersal matrix (75). The logistic met- 
apopulation is defined by Eqs. 5 with F the normal- 
ized logistic map (39-47) 

where r is the maximum fecundity. 
15. In our illustrative example, the dispersal matrix M has 

one of two simple forms. For equal coupling a pro- 
portion m from each patch disperses uniformly 
among the other n - 1 patches, and a proportion 
1 - m does not disperse. Formally 

For nearest neighbor coupling on a one-dimensional 
ring, a fraction m12 from each patch disperses to 
each of the two nearest neighbor patches and the 

remaining fraction 1 - m does not disperse. Thus. 
the dispersal matrix is 

(8) 
For both these simple cases, the dispersal matrix M is 
symmetric (mu = rnli), meaning that the proportion 
of individuals from patch i that disperse to  patch j 
is the same as the proportion from patch j that 
disperse to patch i. This need not be the case. 
however, and the matrix M could in general have a 
very complicated structure. For example, it may be 
easier to disperse in one direction (e.g., because of 
prevailing winds or altitude changes), and dispersal 
rates may be much higher in some areas than in 
others (e.g., because of local weather or topogra- 
phy). Our results do not depend on the dispersal 
matrix being symmetric. 

16. The metapopulation is in a coherent state at time t if 
the population density in each patch is the same (xf 
= x! for all i and j at time t). A sequence of patch 
denities that satisfy Eqs. 5 is a coherent solution i f  
the metapopulation is in a coherent state at all times. 

17. The probability of coherence is determined by the 
total volume of the basins of attraction of all coher- 
ent attracting solutions (76) of Eqs. 5. For each r and 
m in Fig. 2, we estimated this probability on the basis 
of a sample of lo4 initial conditions. The probability 
of coherence was taken to be the proportion of the 
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PSD-95 Involvement in 

Maturation of Excitatory 


Synapses 
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PSD-95 is a neuronal PDZ protein that associates wi th  receptors and cytoskel- 
eta1 elements at synapses, but whose function is uncertain. We found that 
overexpression of PSD-95 in  hippocampal neurons can drive maturation of 
glutamatergic synapses. PSD-95 expression enhanced postsynaptic clustering 
and activity of glutamate receptors. Postsynaptic expression o f  PSD-95 also 
enhanced maturation of the presynaptic terminal. These effects required syn- 
aptic clustering of PSD-95 but did not  rely on its guanylate kinase domain. 
PSD-95expression also increased the number and size of dendritic spines. These 
results demonstrate that PSD-95 can orchestrate synaptic development and are 
suggestive of roles for PSD-95 in  synapse stabilization and plasticity. 

[which is true, in particular, for the logistic map (a)], 
then condition 3 guarantees that the corresponding 
coherent attractor of the metapopulation is the 
unique attracting solution of Eqs. 5. Both the local 
and global coherence criteria can be established rig- 
orously and do not depend on M being diagonaliz- 
able; elsewhere (42), we show this in detail and 
rigorously characterize the dispersal patterns of sys- 
tems that admit locally stable coherent oscillations 
(in practice, this includes all ecologically relevant 
models). 
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31. The logistic metapopulation model that we used for 
the figures is merely the simplest idealized case. 
However, the results for the logistic reproduction 
function are representative for many systems (the 
sequence of bifurcations is generic in a broad class of 
dynamical systems). In addition, simulations show 
that our results are not substantially affected by 
demographic or environmental stochasticity (local 
noise). 

32. Our analytical results, Eqs. 1 to 3, can be generalized 
in a number of important ways (42). They apply, 
essentially as stated, to metapopulations involving 
multiple species, age structure, external (explicitly 
time-dependent) forcing, and other realistic features. 
The key technical point behind these extensions is 
that our derivations of the coherence conditions do 
not depend on the single-patch map (F) being one- 
dimensional. If F is multidimensional, then in the 
local criteria 1 and 2, the Lyapunov exponent p. is 
simply replaced by the maximal Lyapunov exponent 
of the multidimensional single-patch map; in the 
global criterion 3, the maximum reproductive rate [r 
= sup, IF'(x)~] is replaced by the maximum of the 
matrix norm of the jacobian derivative of F. Similar 
conditions can also been obtained for systems involv- 
ing continuous space and/or continuous time. 

33. It is an immediate consequence of condition 1 that 
locally stable, nonchaotic solutions of the single- 
patch map are always locally stable as coherent 
solutions (16) of the metapopulation. The reason is 

Despite the central role for synapses in neu- 
ronal function, mechanisms underlying syn- 
apse formation remain incompletely under- 
stood. Recently, proteins containing PDZ 
motifs have been proposed as molecular scaf- 
folds for receptors and cytoskeletal elements 
at synapses (1-4). The prototypical PDZ pro- 
tein, postsynaptic density-95 (PSD-95ISAP- 
90), is a membrane-associated guanylate ki- 
nase (MAGUK) concentrated at glutamater- 
gic synapses (5, 6) .  PSD-95 may participate 
in synapse development because it clusters at 
synapses before other postsynaptic proteins 
( 7 ) , and because discs large, a PSD-95 ho- 
molog in Drosophila, is necessary for proper 
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development of larval neuromuscular junc- 
tions (8).Despite numerous studies it remains 
uncertain whether PSD-95 participates in 
synapse development in mammals. Targeted 
disruption of PSD-95 in mice does not alter 
synaptic structure (9) ,possibly because three 
other MAGUKs and dozens of other PDZ 
proteins occur at brain synapses. This molec- 
ular redundancy has obscured understanding 
of functions for PSD-95 and other PDZ pro- 
teins in the brain. 

We overexpressed PSD-95 to help de- 
fine its roles (10). Green fluorescent pro- 
tein (GFP)-tagged versions of PSD-95 tar- 
get faithfully to postsynaptic sites in hip- 
pocampal neurons, despite being overex-
pressed 5 to 10 times above endogenous 
levels (11, 12). To evaluate the effects of 
PSD-95 on synaptic development, we ana- 
lyzed cultures at early developmental stag- 
es, day in vitro (DIV) 10 to 12, and noted 
an increase of glutamate receptor subunit-1 
(GluR1) immunofluorescence at postsynap- 
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