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Sediments at  the Top of 

Earth's Core 
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Unusual physical properties at the core-mantle boundary have been inferred 
from seismic and geodetic observations in recent years. We show how both 
types of observations can be explained by a layer of silicate sediments, which 
accumulate at the top of the core as Earth cools. Compaction of the sediments 
expels most of the liquid iron but leaves behind a small amount of core 
material, which is entrained in mantle convection and may account for the 
isotopic signatures of core material in some hot spot plumes. Extraction of 
light elements from the liquid core also enhances the vigor of convection 
in the core and may increase the power available to the geodynamo. 

The boundary between Earth's liquid iron 
core and silicate mantle coincides with a 
region of unusual structural complexity (I). 
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Strong lateral variations in P- and S-wave 
velocity are evident in the lowermost 200 km 
of the mantle (2-5). More substantial anom- 
alies in the seismic velocities, possibly in 
excess of - 10% (relative to the average seis- 
mic velocities in the lowermost mantle). have 
been detected within a few tens of kilometers 
of the core-mantle boundary (CMB) in sev- 
eral regions (6-9). These ultralow-velocity 
zones (ULVZs) have been interpreted as ev- 
idence for partial melt (10). although altema- 
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tive interpretations are possible (11). 
Other indications of unusual physical 

properties are inferred from periodic varia- 
tions (nutations) in Earth's rotation (12). 
Anomalous dissipation in the annual nutation 
can be explained by the effects of metallic 
electrical conductivities in the lowermost 
200 m of the mantle (13, 14). Additional 
support for a conducting layer is derived from 
improving estimates of the 18.6-year nutation 
(Fig. 1A). These observations impose a key 
constraint on the structure of the CMB be- 
cause the inferred electrical conductivity can- 
not be reconciled with the properties of sili- 
cates (IS). Here, we explore the possibility 
that these anomalous features are caused by 
an accumulation of sediments at the CMB. 

Estimates of density in the core suggest 
that the core is composed of Fe and lighter 
alloying components (16). It is generally 
thought that the components lighter than Fe 
were dissolved into the liquid iron during 
core formation (I 7), although the identity of 
the lighter elemepts is unknown. After the 
core forms, the liquid in contact with the base 
of the mantle evolves toward a chemical 
equilibrium, probably through chemical reac- 
tions between the silicates and the liquid iron 
(18-20). Vigorous convection in the core can 
thoroughly stir the liquid in lo3 years (21), 
whereas changes in the structure of the man- 
tle occur over lo8 years. Thus, the liquid core 
should chemically equilibrate with the base 
of the mantle, although the composition of 
the silicate minerals in contact with the core 
may not be representative of the bulk of the 
mantle (22). Indeed, the mineral composition 
may not be uniform over the surface of the 
CMB. 

Cooling and solidification of the core dis- 
turbs the chemical equilibrium by segregating 

lighter elements into the liquid outer core as 
the solid inner core grows (Fig. 2). The nat- 
ural tendency to restore equilibrium with the 
base of the mantle should not be impeded by 
kinetic effects because of the high tempera- 
ture (4000 + 500 K) at the CMB (23, 24). 
We assume that chemical equilibrium is re- 
established by precipitating lighter elements 
from the liquid core, although the form of the 
precipitate depends on the details of the 
equilibration process. Speculations about this 
process are guided by experiments on mix- 
tures of perovskite and Fe at high pressure 
and temperature (22), which suggest that 
chemical reactions of the form 

are possible at the pressure and temperature 
of the CMB. Here y denotes the mole fraction 
of Mg in the initial perovskite. 

The segregation of FeSi and FeO into 'the 
liquid core by inner-core growth causes their 
concentrations to increase above the equilib- 
rium concentrations with respect to the man- 
tle. Under these conditions we expect the 
direction of the reaction to reverse, removing 
excess FeSi and FeO from the liquid core to 
form a silicate perovskite. Alternatively, the 
excess Si or 0 may precipitate as either a 
liquid or solid phase of an Fe-rich species. 
Deposition of a metallic solid phase poses 
some difficulties, because observations of 
short-period variations in the internal mag- 
netic field limit the magnetic diffusion time 
of the mantle to less than a few years (25). 
Accumulation of a metallic layer in excess of 
10 km would be sufficient to violate this 
observational constraint if the layer covered 
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Fig. 1. Observational evidence for an 
anomalous layer at the base of the 
mantle. IA) Com~arison of the observed 

and predicted nutations at the principal periods reveals two larie discrepancies in the (out-of- 
phase) amplitudes of the -18.6-year and -1.0-year terms when a conducting layer is not included 
in the prediction (42). The amplitudes are measured in milliarcseconds (mas), and the sign of the 
period distinguishes prograde (+) and retrograde (-) motions. Including a thin layer with a 
conductance of lo8 5 significantly reduces these discrepancies relative to the measurement 
uncertainty of ?0.015 mas. (B) A broadband displacement record at 108.5" in distance (thick gray 
trace) is compared with two synthetic waveforms. Predictions using the physical properties of the 
sedimentary layer (solid line) are comparable to those obtained with a typical ULVZ model (dashed 
line), in which the layer thickness is 5 km and the velocity reductions in P- and S-wave velocities 
are -10% and -30%, respectively (see text). 

most of the CMB. Alternatively, a liquid 
phase may separate and pond at the boundary, 
but such a layer is unable to explain the 
unusual properties inferred at the CMB from 
seismic and geodetic observations. Conse- 
quently, we favor an equilibration mecha- 
nism that relies on chemical reactions. For the 
purposes of our calculations, we suppose that 
1 mol of Fe alloy reacts to form 1 mol of 
silicate. The Fe alloy has the generic form 
FeX, and we consider several possible choic- 
es for the light element X. The resulting 
silicate is assumed to have the density, vol- 
ume, and elastic properties of the average 
lower mantle (26). 

We quantify the mass of light element X 
that precipitates from the liquid core under 
the assumption that convection keeps the liq- 
uid core well mixed. For chemical equilibri- 
um to be maintained between the fluid core 
and the base of the mantle, the mass of X that 
precipitates from the fluid core must (on av- 
erage) equal the mass of X that is rejected 
from the volume of the inner core. For sim- 
plicity, we assume a constant density p, in the 
core, so the mass of X excluded from the 
inner core is given by Mx = ACMi,, where 
AC is the change in the mass fraction of X 
across the inner to outer core boundary and 
Mi, is the mass of the inner core. In our 
proposed chemical reaction, 1 mol of X (with 
molar mass rnd is converted to 1 mol of 
silicate (with molar mass m,,,). It follows 
that the mass of the silicate sediment is 
Msed = (rnsedlmX)MX' 

Silicate minerals should accumulate at the 
top of the core because of their buoyancy in 
liquid Fe (27). Knowledge of where the sed- 
iments form and how they are deposited is 

MANTLE 

chemical 
OUTER plumes 
CORE 

INNER /iy 
Fig. 2. Schematic cross section of Earth's core 
and.lower mantle. Light elements are segregat- 
ed into the outer core as the inner core grows 
by solidification. The increasing concent;ation 
of light elements in the outer core causes ex- 
cess light elements to  form sediments, possibly 
through chemical reactions at the CMB. The 
sediments accumulate preferentially in depres- 
sions at the top of the core. Although compac- 
tion of the sediments has the effect of expelling 
liquid iron and reducing the thickness of the 
layer, the sediment front (dashed line) moves 
downward with time. 
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Porosity 

Fig. 3. Profiles of porosity calculated in the 
sedimentary layer after 80 and 100 My of 
accumulation. A region of high porosity devel- 
ops in the lowermost part of the layer where 
new sediments are added. A region of nearly 
constant porosity increases in vertical extent as 
sediments accumulate. 

not essential for our discussion. Instead, we 
treat the initial porosity +, at the time of 
deposition as a model parameter and use 
analogies with crystal accumulation in mag- 
ma chambers (28) and deposition of seafloor 
sediments to assign a value of +, = 0.5. The 
volumetric rate of deposition is then given by 
qed= where the dot denotes a are shown in Fig. 3. The largest porosity ~ ~ ~ ~ l ( ~ ~ ~ ~ + ~ ) ,  
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silicate matrix (see below). The initial Doros- 
ity +, at the time of deposition is imposed as 
a boundary condition on the porosity at the 
lower interface. An important consideration 
in these calculations is whether the liquid Fe 
remains interconnected in the silicate matrix. 
Several lines of experimental evidence (22, 
35) suggest that liquid Fe wets the surface of 
silicate minerals at high pressure and temper- 
ature. Otherwise, isolated pockets of liquid 
Fe develop within the layer as the porosity 
decreases. The lack of evidence for Fe d r o ~ -  
lets persisting in the mantle after core forma- 
tion suggests that silicates are permeable to 
liquid Fe. We characterize the relation be- 
tween permeability and porosity using the 
Kozeny-Carman equation (36). 

A second constitutive equation is required 
to describe the stress-strain relation in the 
solid matrix. The resistance of the porous 
matrix to compaction is characterized by an 
effective bulk viscosity that is typically com- 
parable in magnitude to the shear viscosity of 
the solid grains (31, 32). On the basis of 
estimates of the shear viscosity in the lower 
mantle (37), we adopt lo2' Pa.s as a nominal 
value for the bulk viscosity. However, we 
explore the possibility that higher tempera- 
tures at the CMB reduce the bulk viscosity. 
For the viscosity of liquid iron, we assume a 
value of lop2  Pa.s (38). 

The predicted profiles of porosity at two 
epochs [separated by 20 million years (My)] 

time derivative. Combining these results 
gives the deposition rate in terms of the 
growth of the inner core 

where <, = M,,lpc is determined using a 
model for the thermal evolution of the core 
(29). We adopt <,,I<, .= 1 as a plausible 
estimate (30) and assume initially that the 
sediments are uniformly distributed over the 
CMB. 

The density difference between the sedi- 
ments and liquid iron should cause viscous 
compaction of the layer. The porosity of the 
sediments gradually decreases after deposi- 
tion, and the interstitial liquid iron is ex-
pelled. The equations governing viscous 
compaction are well known (31, 32) and have 
been applied to sedimentation processes in a 
variety of geological settings (28, 33). We 
apply the formulation of McKenzie (31) to 
quantify the one-dimensional compaction of 
a plane layer (34). The top of the layer rests 
against the base of the mantle, which we 
assume is relatively impermeable compared 
with the permeability of the sediments (Fig. 
2). We also assume that the stress on the 
lower interface of the sediment layer vanishes 
because the viscosity of the underlying liquid 
core is negligible compared with that of the 

occurs at the interface where the sediments 
are deposited. The initial value of 4, = 0.5 
decreases rapidly to a residual value of + .= 

0.05 over 1.5 km. The structure of porosity 
near the sedimentation front is almost invari- 
ant as the layer advances into the core. Deep- 
er than 1.5 km into the layer, the porosity 
becomes nearly uniform. In this region the 
sediment permeability is low enough to in- 
hibit the expulsion of liquid iron. Increases in 
the liquid pressure develop in response to 
compaction, which opposes the buoyancy 
forces and limits further consolidation. The 
region of nearly uniform porosity extends 
several kilometers into the layer after 100 My 
of accumulation. 

The general form of the porosity distribu- 
tion is unaltered by different choices of pa- 
rameter values, although specific details are 
affected. For example, the zone of high po- 
rosity near the sedimentation front is influ- 
enced by the viscosity qqof the solid matrix 
and the rate of sedimentation Vs,,lAs,,, where 
A,,, is the area of sedimentation. Scaling 
suggests that the vertical extent of this region 
depends on q, and V~,,~A,,, in the combina- 
tion (q ,~~ , , l~ , , , )~~ ' .  For example, a matrix 
viscosity of lo2' Paas reduces the vertical 
extent of the high-porosity region to about 
500 m. On the other hand, reducing Ased by 
confining sedimentation to topographic de- 

pressions in the CMB broadens the high- 
porosity zone. Further into the sedimentary 
layer, the value of residual porosity is con- 
trolled by the permeability of the sediments. 
Permeability is a strong function of the grain 
size a in the Kozeny-Carman equation (36). 
We adopt a = lo-' m as a plausible value, 
although there are currently no constraints on 
this parameter. Calculations with other choic- 
es of a indicate that the residual porosity is 
inversely proportional to a. For example, 
when a = 5 X lo-', we predict a residual 
porosity of 1% (versus 5% in Fig. 3). 

The vertical extent of the residual-~oros- 
ity zone increases with accumulation time 
and can exceed tens of kilometers after sev- 
eral hundred My of accumulation. The iron 
contained in the residual porosity is eventu- 
ally buried deep enough to become entrained 
in mantle convection. This process may ex- 
plain the enrichment of ls60s and ls70s (rel- 
ative to 's80s) in some mantle plumes (39). 
The isotopic signatures in primitive Hawaiian 
picrites are attributed to the addition of 0.5% 
to 1% core material in the Hawaiian plume, 
which is compatible with the range of resid- 
ual porosities obtained in our calculations. 

Some physical properties of the sedimen- 
tary layer can be estimated using the predict- 
ed profiles of porosity. The density is ob- 
tained from a volume average of the silicate 
and iron components, whereas the electrical 
conductivity is estimated using Archie's law 
(40). The P- and S-wave velocities v, and I>, 

are estimated using the ashi in-~htrikhan up-
per bounds on the effective elastic moduli, so 
that our predicted reductions in seismic ve- 
locities are minimum values (41). The pre- 
dicted density perturbation relative to p = 
5570 kg m-3 decreases from a maximum 
value of 38% at the sedimentation front to 
values of 4 to 5% in the region of residual 
porosity (Fig. 4A). The electrical conductiv- 
ity is 1.8 X lo5 S m ' at the sedimentation 
front, but decreases rapidly to values of order 
lo3 S m 1  in the region of residual porosity. 
The total conductance of the layer is 1.7 X 

los S, which is sufficient to explain the nu- 
tation observations (Fig. 4B) (14, 42). Our 
estimates for the elastic velocities suggest 
that the reduction in S-wave velocity (relative 
to v, = 7.26 km s-I) is about twice as large 
as the reduction in P-wave velocity (relative 
to v, = 13.72 km s- ')  (Fig. 4C). 

Both the relative and absolute magnitudes 
of the P- and S-wave velocity reductions are 
large enough to provide a viable explanation 
for the ULVZ (6-11). The thickness of the 
anomalous zone (coinciding with the region 
of high porosity) also proves to be sufficient. 
Waveform modeling using the seismic veloc- 
ities and density predicted for the sedimenta- 
ry layer yields the results shown in Fig. IB. 
In particular, the appearance of a second peak 
in the observed seismic record (identified as 
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Fig. 4. Physical properties of 
the sedimentary layer are esti- 
mated using the profiles of po- 
rosity. (A) The density is a vol- 
ume average of the sediment 
and liquid iron components. (B) 
The electrical conductivity is 
calculated using Archie's law 
(40) and assumes that the sed- 
iments are electrically insulat- 
ing. (C) The anomalies in P-
and S-wave velocity are esti- 
mated using the Hashin-Shtrik- 
man upper bound and are ex- 
pressed as percentages relative 
t o  the average properties of 
the lowermost mantle. 

Density perturbation (%) Electrical conductivity (105 S m-1) Velocity perturbation (%) 

SP,KS) is reproduced in the calculated wave- 
form (solid line). Comparable results are ob- 
tained using a more typical ULVZ model 
(dashed line), in which the layer thickness is 
5 km and the P- and S-wave reductions are 
-10% and -3096, respectively (9). 

It is unlikely that sediments accumulate 
uniformly over the surface of the CMB. In- 
stead, sediments would tend to collect in 
areas where the CMB is displaced into the 
mantle relative to the average boundary po- 
sition (topographic highs in the boundary po- 
sition correspond to basins from the point of 
view of the core). More rapid accumulation 
and thicker deposits enhance the elastic per- 
turbations in these areas, so we expect a 
correlation between the location of ULVZs 
and positive radial displacements of the 
CMB. Testing for such a correlation using 
better maps of the CMB topography and 
ULVZ locations would afford an important 
test of our model. Other tests are suggested 
by the physical structure of the layer. For 
example, the large reductions in S-wave ve- 
locity are confined to a 1- to 2-km layer, 
which is too thin to produce distinct precur- 
sors in reflected S-waves (particularly ScP). 
Thus, we expect no anomalous ScP waves in 
regions where ULVZs are detected in SP,KS 
data (43, 44). However, undulations in the 
top of the sediment layer resulting from en- 
trainment by the mantle could cause focusing 
(or defocusing) of seismic waves that reflect 
from the mantle side of the CMB. In contrast, 
filling of the boundary topography with sed- 
iments would reduce the effects of boundary 
topography on the reflection of seismic 
waves from the core side of the CMB. 

Enrichment of 0 s  isotopes in Hawaiian 
picrite lavas is compatible with the presence 
of sediments at the top of the core, but the 
data do not demand this interpretation. Sim- 
ilarly, seismological evidence for ULVZs 
does not require a sedimentary layer, al-
though these data can be explained by such a 
layer. A more stringent constraint comes 
from observations of Earth's nutation, which 

appear to require a layer at the base of the 
mantle with a conductance of 10' S. The 
remarkable agreement between nutation the- 
ory and observations restricts alternative in- 
terpretations. One possibility requires an in- 
crease in the viscosity of the liquid core to 
lo3 Paas (13). However, there is no basis for 
increasing the current theoretical estimates of 
viscosity by more than five orders of magni- 
tude (38). 

Sediments offer a plausible explanation 
for the conducting layer inferred from nuta- 
tion observations, and can also account for 
the ULVZ. This layer may also have impor- 
tant consequences for convection in the core, 
because the incorporation of light elements 
into sediments leaves behind a dense iron- 
rich liquid, which sinks into the interior of the 
core. This additional source of buoyancy 
could increase the power available to main- 
tain Earth's magnetic field by a factor of 2 
(45). 
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We have applied an inverse model t o  20 years of atmospheric carbon dioxide 
measurements t o  infer yearly changes in the regional carbon balance of oceans 
and continents. The model indicates that global terrestrial carbon fluxes were 
approximately twice as variable as ocean fluxes between 1980 and 1998. 
Tropical land ecosystems contributed most o f  the interannual changes in Earth's 
carbon balance over the 1980s, whereas northern mid- and high-latitude land 
ecosystems dominated from 1990 t o  1995. Strongly enhanced uptake o f  carbon 
was found over North America during the 1992-1993 period compared t o  
1989-1990. 

Over the past two decades, on average, about 
half of the CO, emissions caused by fossil fuel 
combustion have remained in the atmosphere, 
the rest having been absorbed by the ocean and 
by land ecosystems. Year-to-year variations in 
the rate of atmospheric CO, accumulation are of 
the same magutude as the decadal mean annual 
accumulation and result primarily from shifts in 
the natural carbon fluxes (1). Previous investi- 
gations into which reservoir (land or ocean) and 
whlch regions caused such year-to-year changes 
have produced conflicting answers. Carbon sta- 
ble isotope studies all infer large shifts of both 
land and ocean fluxes of up to several giga- 
tonnes (lOI5 g) of carbon per year (GtC year-') 
(2, 3). In contrast, ocean carbon models and 
measurements of the CO, partial pressure dif- 
ference between the ocean surface and the at- 
mosphere (Apco,) suggest relatively small 
changes in the air-sea fluxes (4-6). Global bio- 
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geochemical models of the land biosphere gen- 
erally produce large interannual shifts in terres- 
trial fluxes, but they differ in where or how they 
attribute these shifts to underlying processes 
(photosynthesis or respiration). 

Inverse models using atmospheric CO, ob- 
servations and atmospheric transport have been 
applied to infer the mean spatial distribution of 
CO, fluxes (7-9), but rarely to estimate their 
interannual variability (10). Here, we construct- 
ed an inversion using 20 years of atmospheric 
CO, measurements, mostly from the NOAA 
Climate Monitoring and Diagnostics Laborato- 
ry air sampling network, to infer monthly 
changes in the carbon balance of large regions. 
The carbon balance of continents and oceans 
can be considered as the sum of two compo- 
nents, a long-term mean net flux (over 20 years) 
and a monthly varying flux anomaly. In the 
following, we present and discuss the monthly 
varying flux anomalies. The results of the in- 
verse approach ("top-down") are compared 
with predictions of two state-of-the-art global 
models ("bottom-up") of the carbon fluxes over 
land ecosystems and oceans. 

Over the past 20 years, the annual accumu- 
lation of CO, in the atmosphere has varied 
between 1 and 6 GtC year-' (1). Because fossil 
CO, emission changes do not vary much from 
year to year, the observed changes in accumu- 
lation rate reflect variations of ocean and land 

outer core. The release of gravitational energy is 
proportional to & - $(r,,), where $(r,,) is the gravi- 
tational potential at r = r,, and (J is the average 
potential over the liquid core. If the excess light 
elements are subsequently incorporated into sedi- 
ments at the top of the corer = r,, the total release 
of gravitational energy is proportional to $(rc) -
+(r,,), which is larger than - tb(r,,) by about a 
factor of 2. 
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fluxes. At present, about 120 CO, data records 
from around the globe are available (11). Most 
CO, stations are in the marine boundary layer: 
they can be influenced directly by ocean fluxes 
and more indirectly by land fluxes. A few CO, 
stations, however, are close to or within the 
continents and can better capture year-to-year 
changes in terrestrial fluxes. Among the 120 
sites available in 1998, we have selected 67 
sites (12). At each site, we have analyzed the 
variance of the deseasonalized trend after sub- 
traction of the trend at the South Pole (13). This 
analysis indicates that there is "excess" variance 
at low frequency at continental sites compared 
to oceanic sites (Fig. 1). This excess variance 
may reflect short-term spatial and temporal 
variability of land fluxes or of atmospheric 
transport. However, it also suggests that terres- 
trial carbon fluxes exhibit larger year-to-year 
variations than their oceanic counterparts. This 
inference can be evaluated by using an inverse 
model to calculate regional carbon balance vari- 
ations from observed concentration variations. 

We have developed such a model, extend- 
ing the work of (9), to retrieve the net CO, 
fluxes every month from 1980 to 1998 (13). 
The inverse model optimizes CO, ocean and 
land fluxes for 11 continental regions and eight 
ocean regions (Fig. 1) by minimizing the dif- 
ferences between the CO, concentrations sim- 
ulated by a three-dimensional atmospheric 
transport model and those observed at measure- 
ment sites. Fossil CO, fluxes are prescribed 
from energy use statistics (14). The control 
inversion is described in (13). The atmospheric 
CO, data used for the inversion are calculated 
from 67 selected monitoring sites (12) over the 
period 1980-1998. Raw flasks and in situ 
records are smoothed in the time domain to 
remove synoptic variability (1 1) and are used in 
the form of monthly means. An increasing 
number of stations is available over time, from 
20 sites in 1980 to 67 sites in 1997, with 35 new 
sites appearing between 1987 and 1991. Data 
uncertainties are estimated each month at each 
station from the (synoptic) scatter and measure- 
ment uncertainties of the original flask data 
(13). In addition to the control inversion (13). 
we have carried out a sensitivity study consist- 
ing of seven additional inversions in which key 
parameters are varied individually (15), provid- 
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