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NMDA Receptor-Dependent 

Synaptic Reinforcement as a 

Crucial Process for Memory 


Consolidation 

Eiji Shimizu,* Ya-Ping Tang,* Claire Rampon, Joe Z. Tsient 

The hippocampal CAI  region is crucial for converting new memories into 
long-term memories, a process believed t o  continue for week(s) after initial 
learning. By developing an inducible, reversible, and CAl-specific knockout 
technique, we could switch N-methyl-D-aspartate (NMDA) receptor function 
off or on in CAI  during the consolidation period. Our data indicate that memory 
consolidation depends on the reactivation of the NMDA receptor, possibly t o  
reinforce site-specific synaptic modifications t o  consolidate memory traces. 
Such a synaptic reinforcement process may also serve as a cellular means by 
which the new memory is transferred from the hippocampus t o  the cortex for 
permanent storage. 

The hippocampus is critical for converting 
short-term memories into long-term memo- 
ries (1-7). The NMDA receptor in the CAI 
region serves as a gating switch for the mod- 
ification of major fonns of synaptic plasticity 
(8-13) and is required for certain types of 
learning (14-17). Despite both gain-of-func- 
tion and loss-of-function genetic evidence 
linking the NMDA receptor to memory for- 
mation (18-ZO), its role in memory consoli- 
dation, which occurs over the days and weeks 
after initial learning, has not been well stud- 
ied (5).The lack of coherent effort may be in 
part due to the general knowledge that acti- 
vation of the NMDA receptor is required for 
induction, but not maintenance of synaptic 
plasticity. This has led to the popular belief 
that consolidation at the synaptic level is the 
result of molecular cascades initiated by a 
single long-term potentiation (LTP)-like 
event triggered during learning. However, 
this time scale of a single LTP-like molecular 
event (e.g., protein synthesis and gene ex-
pression) may not be adequate to account for 
the long-term memory consolidation process 
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that is known to continue many days and 
weeks after initial learning experience. 

To examine the role of the NMDA re- 
ceptor in long-term memory consolidation, 
we used the third-generation knockout 
technique [see supplementary Web material 
(21)] and generated the inducible, revers-
ible, and CAl-specific NRl knockout mice 
(iCA1-KO) (22, 23). Our overall strategy is 
to use both tTA (24-26) and CreIloxP sys- 
tem (27)  to achieve CAl-specific, tetracy- 
cline-regulated expression of the NR1 -GPF 
transgene (28), thereby restoring the CAI 
NMDA receptor function in the C A l -
specific NR1 knockout mice (14, 1 6 ) .  
However, feeding the iCA1-KO mice with 
drinking water containing doxycycline 
(doxy), a tetracycline analog with higher 
permeability through the blood-brain barri- 
er, will switch off NR1-GFP transgene ex- 
pression and return the mice to the NRI 
knockout state in the CAI region. Further- 
more, removal of doxy from the water re- 
stores NR1-GFP expression in the CAI 
region. Using a green fluorescent protein 
(GFP)-specific antibody (ZY), we found 
that the level of NRI-GFP protein was 
mostly restricted to the CAI region of un- 
treated iCA1-KO mice (Fig. 1 ,  A and B), 
whereas the doxy treatment (1  mgiml) sup- 
pressed NRl -GFP expression in the CA 1 
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region within 3 to 5 days (Fig. I ,  C and D). 
This duration may indicate the possible 
turnover rate for NMDA receptor complex 
in the brain. NRI-GFP started to reappear 
within 5 days after the withdrawal of doxy 
from the drinking water. 

We also measured the CAI field excita- 
tory postsynaptic potentials (EPSPs) in hip- 
pocampal slices prepared from mice treated 
with doxy or vehicle (30) and observed no 
obvious change in cu-amino-3-hydroxy-5- 
methyl-4-isoxazolepropionic acid (AMPA) 
receptor-mediated synaptic transmission 
between control littermates and iCA1-KO 
mice (either doxy-treated or vehicle-treat- 
ed, n = 4 mice each group). Moreover, we 
found that NMDA receptor-mediated 
EPSPs were indistinguishable between 
those of controls or vehicle-treated iCA1- 
KO mice, suggesting the functional rescue 
of NMDA receptor activity in CAI. How- 
ever, upon the treatment of doxy, CAI- 
NMDA currents in iCAI-KO mice were 
completely abolished in most slices (five 
out of seven slices, seven mice) (Fig. IE, 
top panels). although in two slices we could 
still elicit NMDA currents at high intensi- 
ties of stimulation. This indicates the pres- 
ence of residual NMDA receptors at a few 
CAI synapses despite the fact that we could 
no longer see NRI-GFP staining in the 
CAI region. 

To study LTP in the hippocampal slices, 
we applied two I-s trains (100 Hz. test 
strength, spaced 10 s apart) in Schaffer-col- 
lateral CAI pathway. LTP was readily pro- 
duced in both vehicle-treated iCA1-KO and 
control littermates (2 10.0 + 19.2%. n = 5 
control mice; 227.6 + 16.3%. n = 5 iCAI- 
KO mice). However. no LTP was observed in 
doxy-treated iCAI-KO mice (n = 5; 105.1 2 
6.9%) (Fig. I ,  E, bottom panels, and F), 
suggesting the loss of NMDA-dependent 
plasticity after doxy treatment. 

To examine the acute effect of switching- 
off CAI NMDA receptors on learning, we 
first used a hidden-platform water maze (31). 
We tested three groups of young adult ani- 
mals: iCAI-KO mice treated with vehicle. 
iCA1-KO mice treated with doxy. and con- 
trol mice treated with doxy (I  mg/ml in the 
drinking water. starting 5 days before the 
training). We found that doxy-treated iCA1- 
KO mice exhibited longer escape latency 
than doxy-treated control or vehicle-treated 
iCA1-KO mice [F(2. 38) = 17.88. P < 
0.0011 (Fig. 2A). The deficits in doxy-treated 
iCA1-KO mice were further confirmed in the 
transfer test (Fig. 2B), indicating the require- 
ment of CAI-NMDA plasticity for spatial 
learning and memory. 

We then used a fear-conditioning task 
(32) with the same doxy treatment paradigm 
(1 mglml. starting 5 days before the training 
began), and a retention test was carried out 24 

hours after training (Fig. 2, C and D). In 
contextual conditioning, a hippocampal-de- 
pendent task (33, 34). vehicle-treated iCA1- 
KO mice exhibited similar freezing responses 
to those of control mice, indicating that the 
expression of NRI-GFP has also rescued the 
contextual memory deficits in CAI-KO mice. 
However, iCA1-KO mice treated with doxy 
showed significantly fewer freezing respons- 
es compared with those in either control or 
vehicle-treated iCA1-KO mice (Fig. 2C). To 
further assess the behavioral specificity in 
iCA1-KO mice, we conducted the hippocam- 
pal-independent, cued-fear conditioning. As 
expected from the CAI-specific genetic ma- 
nipulation, we did not find any significant 
difference in freezing responses among these 
three groups (Fig. 2D). Our additional obser- 
vations further suggested the behavioral spec- 
ificity of CAI-KO mice (35). 

Memory formation consists of at least 

three major distinct stages: acquisition. con- 
solidation and storage, and retrieval (3-6, 
36, 37). To examine whether reactivation 
of CAI-NMDA receptors is required for 
long-term memory consolidation or retriev- 
al. we first examined the consolidation of 
long-term spatial memory by using the hid- 
den-platform water-maze task. We trained 
both control and vehicle-treated iCA I -KO 
mice with a seven-session training protocol 
(31). Both control and iCA1-KO mice ex- 
hibited similar learning curves (Fig. 3A). 
After the seven-session training, both 
groups of mice were treated with doxy for 
the first week ( 1  mglml. posttraining days I 
to 7) and then with water from the second 
week (days 8 to 14) (Fig. 3A). Retention 
tests were carried out on the 15th day after 
training, and transfer tests were performed 
24 hours later. A significant difference in 
the latency between doxy-treated control 

E 
Control (vehicle) CAI-KO (doxy) 

Contml (wldclr) iCA I-KO (doxy) 

-20 -10 0 10 20 30 
time (min) 

Fig. 1. Characterization of iCA1-KO mice: (A to D) expression of NR1-CFP fusion protein revealed 
by CFP immunohistochemistry. (A) iCA1-KO mice have high expression in CAI in the absence of 
doxy (5X magnification). (B) At higher magnification (40X), high expression of NR1-CFP in 
dendrite, axons, and cell bodies of CAI pyramidal cells in vehicle-treated iCA1-KO mice. (C) 
iCA1-KO mice treated with doxy (1 rnglml) for 3 days, showing only residual NR1-CFP in CAI. (D) 
iCA1-KO mice treated with doxy for 5 days, showing no detectable CFP signals. (E) Normal NMDA 
receptor-mediated EPSPs in the presence of the AMPAIkainate receptor antagonist CNQX in 
controls (not shown) or vehicle-treated iCA1-KO mice, but lack of CAI NMDA currents in 
doxy-treated mice (top panels). Single EPSP traces before and after LTP induction in control or 
doxy-treated iCA1-KO (bottom panels). (F) Normal CAI-LTP (averaged) in hippocampal slides from 
vehicle-treated iCA1-KO (A, n = 5 mice) or control mice (0, n = 5 mice), but no LTP could be 
induced in doxy-treated iCA1-KO mice (B, n = 5 animals). 
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Fig. 2. Loss of CAI-NMDA 
receptors before training 
impairs learning in iCA1- 
KO mice. (A) Escape laten- 
cy (mean L SEM) in wa- 
ter-maze training in doxy- 
treated control (n = 14), 
vehicle-treated iCA1-KO 
(n = 12), and doxy-treated 
iCA1-KO (n = 15) mice. 
Repeated ANOVA analysis 
indicated a significant dif- 
ference between control or 
vehicle-treated iCA1-KO 
mice and doxy-treated 
iCA1-KO mice. A posthoc 
test indicated the signifi- 
cant difference between 
doxy-treated iCA1-KO and 
either doxy-treated con-
trol or vehicle-treated 
iCA1-KO mice (P < 0.05 
between sessions 3 and 7). 
(B) Place preference in the 
transfer test conducted at 
the end of training session. 
Both doxy-treated control 
and vehicle-treated C A I -  
KO mice spent more time 
in the target quadrant 
than other quadrants, 
compared with doxy-
treated iCA1-KO mice. (C) 
Contextual conditioning 
(condi) in doxy-treated 
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control (n = lo), vehicle-treated iCA1-KO (n = 1 I) ,  and doxy-treated treated control (P < 0.01, Student's t test) or vehicle-treated iCA1-KO (P < 
iCA1-KO (n = 10) mice. Although there is no significant difference in 0.01, Student's t test) mice. (D) Cued conditioning in the same groups of 
immediately freezing (imm freezing), a significantly lower freezing response mice. No significant difference was found between any two groups of these 
was found in doxy-treated iCA1-KO mice, compared with either doxy- animals. 

and doxy-treated iCAl-KO mice was found 
in the retention test (Fig. 3A). This deficit 
was further confirmed by the transfer test 
(Fig. 3B), indicating that the reactivation of 
CAI NMDA receptor-mediated synaptic 
plasticity week(s) after initial learning is 
required for the consolidation of short-term 
into long-term spatial memory. 

To assess the role of NMDA receptor in 
memory retrieval and/or the late stages of 
consolidation, we trained another two groups 
of mice using the 7-day training as above. 
Control and vehicle-treated iCA1-KO mice 
exhibited similar learning curves, and there 
was no significant difference in the latency in 
finding the platform between the two groups 
(Fig. 3C). At the end of the 7 days of training, 
the mice were returned to their home cages, 
continuously treated with regular water for 9 
more days, and then switched to doxy for the 
last 6 days (1 mgiml, posttraining days 10 to 
15). We found no significant difference in 
latency between control and doxy-treated 
iCA1-KO mice in the retention test conduct- 
ed on posttraining day 15 (Fig. 3C). A trans- 
fer test on day 16 further confirmed the nor- 
mal preference toward the target quadrant in 
iCA1-KO mice (Fig. 3D). Thus, our results 
suggest that the requirement of CAI-NMDA 
receptor for memory consolidation is time- 

dependent and both the retrieval and the late- 
stage consolidation of long-term spatial 
memory do not require CA 1 -NMDA receptor 
activity. 

We next examined whether the NMDA 
receptor is also involved in the consolidation 
of emotional memory using a fear-condition- 
ing paradigm that is capable of producing 
long-lasting memories in a single training 
(within seconds). Previous studies have 
shown that lesions of the hippocampus at 
either 7 or 14 days but not 28 days after fear 
conditioning can still produce significant ret- 
rograde amnesia of contextual fear memory 
(38). This suggests that the hippocampus is 
important for the initial storage and consoli- 
dation of the contextual fear memory during 
the following weeks after learning but with 
the passage of time memories are transferred 
elsewhere, such as the cortex. 

We used a 1-month retention fear-condi- 
tioning protocol (32). We found that iCA1- 
KO mice, receiving posttraining doxy treat- 
ment (1 mglml, days 1 to 14), exhibited a 
significant impairment at the 1-month reten- 
tion test for the contextual memory (Fig. 4A) 
despite normal freezing in response to the 
tone (Fig. 4B). These results suggest that 
reactivation of CAI NMDA receptor in the 
following days and week(s) after learning is 

indeed crucial for the formation of the long- 
term contextual fear memory. We further 
found that treatment of doxy in the last 8 days 
(days 22 to 29) has no effects on either the 
contextual or cued retention tests (Fig. 4, C 
and D), suggesting that the CA1 NMDA 
receptors have a time-dependent role in mem- 
ory consolidation but are not required for the 
retrieval of fear memory. 

Because the CAI NMDA receptor is not 
involved in basal synaptic transmission 
(11-13), the reactivation of the NMDA re- 
ceptor in CA1 is likely to act as a triggering 
mechanism for modifying synaptic effica- 
cy. Therefore, our above results indicate 
that memory consolidation may require 
multiple rounds of site-specific synaptic 
modifications, possibly to reinforce plastic 
changes initiated during learning, thereby 
making memory traces stronger and more 
stable. Recent studies report that the learn- 
ing-induced correlation states among CAI 
neurons are reactivated spontaneously in 
the postlearning period (37, 39, 40). Such a 
coactivation of these neurons might suggest 
the existence of the natural condition with- 
in the hippocampus by which the recurrent 
synaptic strengthening can occur during 
memory consolidation. 

We hypothesize that such a synaptic reen- 
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day 14. A significant differ-
ence was found as mea-
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(*P < 0.05, Student's t 
test). (B) A transfer test car-
ried out on day 15 con-
firmed the significant defi-
cits in spatial memory in 
iCA1-KO mice. (C) Escape 
latency (mean i. SEM) in 
retrieval t e h  Both control 
(n = 13) and iCA1-KO (n = 
14) mice received regular 
water during the 7-day 
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doxy for 6 days. A retention test was carried out on posttrainingday 15. No significant difference was found during the training procedures or the retention test (D) 
A transfer test carried out on poaraining day 16 confirmed the normal memory in both doxy-treated iCA1-KO and control mice. 
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