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ductive infection in vivo. Our data suggest 
that this sequence restricts LLO activity to 
the host-cell vacuole, thereby preserving the 
intracellular niche of L. monocytogenes. Per­
haps rapid host-cell lysis by LLOA26 ex­
poses the normally intracellular bacteria to 
extracellular host defenses such as humoral 
immunity and bactericidal phagocytes. 

LLO and PFO are members of a large fam­
ily of pore-forming proteins (27), but LLO is 
the only one to be produced by an intracellular 
pathogen. Our data suggest that the addition of 
a simple sequence tag to a toxic pore-forming 
protein can convert it into a molecule special­
ized for intracellular use. Moreover, because 
intracellular pathogens often use host-cell ma­
chinery for their own purposes, L. monocyto­
genes may achieve the critical balance between 
efficient escape from a vacuole and avoidance 
of host-cell damage by incorporating a eukary-
otic protein degradation signal into a potentially 
toxic bacterial virulence factor. 
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mosome movement. Here, an asymmetrically 
positioned division septum is formed before 
the completion of chromosome segregation 
and closes around one of the pair of replicat­
ed chromosomes, pinching it into a larger and 
a smaller lobe. The larger chromosome lobe 
is then transported from the mother cell into 
the prespore, presumably through a small 
pore in the septum. In the absence of a func­
tional SpoIIIE protein, DNA transfer is 
blocked (4). 

During spore formation, SpoIIIE is target­
ed to the leading edge of the septum. The 
putative transmembrane domain at the NH2-
terminal part of the protein appears to play an 
essential role in this specific localization (5). 
The strategic location of the protein suggests 
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Fig. 1. The rate of ATP hydrolysis in the pres- 
ence of various concentrations of supercoiled 
plasmid DNA. The hexahistidine-tagged SpolllE 
protein (0.7 pglml or 9.9 nM final concentra- 
tion) was used in these measurements. Replac- 
ing this affinity tag by a streptavidin affinity 
tag (using recombinant protein expressed from 
pSG4909) did not significantly alter the ATPase 
activity. See supplementary material (6) for 
experimental details of the ATPase assay. 

that it could mediate chromosome segrega- 
tion by actively transporting the bulk of the 
chromosome destined for the prespore 
through the septum, acting as a DNA pump, 
or, alternatively, the protein could serve the 
role of a pore, through which DNA is driven 
by another effector (such as a DNA-condens- 
ing protein). To gain further insight into 
whether SpoIIIE can directly drive DNA 
movement across the septum, the COOH- 
terminal cytoplasmic portion of the protein 
was overexpressed and purified for biochem- 
ical studies. 

A recombinant SpoIIIE fragment con- 
taining residues 177 to 787 of the intact 
protein plus a hexahistidine tag at the 
COOH-terminus was overexpressed and 
purified to near homogeneity [see supple- 
mentary material (6 ) ] .  Because the se- 
quence of the protein suggested the pres- 
ence of a nucleotide-binding motif (9, we 
first tested the purified protein for ATPase 
activity. The recombinant protein was in- 
deed found to be a DNA-dependent ATPase 
(Fig. 1). In the absence of DNA, about two 
ATPs were hydrolyzed per SpoIIIE mono- 
mer per second. The presence of increasing 
amounts of DNA increased the,rate of ATP 
hydrolysis to a plateau of about 10 ATPs 
per SpoIIIE monomer per second (Fig. 1). 
This experiment was repeated with purified 
SpoIIIE fragment carrying a mutation at 
codon 473, a lysine to alanine substitution 
(7). Replacing the conserved Lys473 in the 
nucleotide-binding motif of the protein 
with alanine is known to abolish SpoIIIE 
hnction in vivo (7). The mutant protein 
showed no detectable ATPase activity. 
Thus, SpoIIIE has functionally important 
ATPase activity. 

The possibility that SpoIIIE might use 
ATP hydrolysis to effect relative movement 
between the protein and a DNA bound to it, 
along the longitudinal axis of the DNA, was 
then addressed. As a protein tracks along 

Fig. 2. Generation of positive and negative DNA super- A 
coils by SpolllE. (A) Relaxed plasmid DNA (lane 1) was .$ 
incubated with various combinations of SpolllE, E. coli 
DNA topoisomerase I ,  and ATP, as indicated above lanes 

P $ 
P P -- 

2 to 5. Reactions were terminated by phenol extraction, E,m'i Topoisomerase I - + - + + 

and the products were separated on a 0.7% agarose gel. SpolllE - - + + + 

Lane 6 contained untreated negatively supercoiled plas- 
mid. The position of a product generated by incubation 
of the relaxed plasmid with SpolllE, E. coli DNA topo- 
isomerase I, and ATP (Lane 4) is indicated in the left Negativelysupercoi'ed\ 
margin. This product was not detected if any compo- Assay product- 1 2 3 4 5 6  

nent of the reaction was omitted, or when ATP in the 
com~lete assav mixture was redaced with the nonhv- B 
drolizable ~,<imido analog AMPPNP. (B) TWO-dim&- 
sional gel electrophoresis of mixtures of DNA topoiso- 
mers. (Left) The reference topoisomer mixture, gener- 
ated by treating negatively supercoiled plasmid with E. 
coli DNA topoisomerase I in the presence of varying 
amounts of ethidium bromide, was resolved into an arc 
of topoisomers with their linking numbers increasing in 
the clockwise direction along the arc. The bright spot to 

Tornisomer Assav Assay 

the left of the arc in this andthe other panel;contained Second dimension 
nicked DNA. (Middle) Distribution of topoisomers in the 1.3 LIM chloroquine 
assay substrate before incubation with SpolllE, E. coli 
DNA topoisomerase I, and ATP. (Right) The distribution of DNA topoisomers in the assay product. 
Highly positively supercoiled topoisomers, in addition to the relaxed topoisomers in the starting 
DNA substrate, were formed upon incubation of the assay substrate with SpolllE, E. coli DNA 
topoisomerase I, and ATP. See the supplementary material (6) for experimental details. 

Fig. 3. A test of two alternative mechanisms of SpolllE-medi- 
ated supercoiling of DNA. Relaxed plasmid DNA (lane 3) was 
incubated with SpolllE, ATP, and either E. coli DNA topoisom- 
erase I (lane 4) or D. melanogaster DNA topoisomerase I (lane 
5). A fast-migrating positively supercoiled product was formed 
in the presence of the E. coli enzyme (compare lanes 3 and 4) 
but not in the presence of the D. melanogaster enzyme (Lane 5). 
Lane 1 contained a sample of negatively supercoiled DNA, and 
Lane 2 the same DNA after treatment with D. melanogaster 
DNA topoisomerase I. The difference in the distribution of. 
topoisomers in the relaxed DNA samples run in lanes 2 and 5 
was owing to the use of different buffers in the relaxation of the 
DNA by vaccinia virus topoisomerase and by Drosophila DNA 
topoisomerase I. 

DNA, positive supercoils may accumulate in 
the region of the DNA ahead of the protein, 
and negative supercoils may be left in its 
wake (8). In the presence of bacterial DNA 
topoisomerase I, which removes negative, but 
not positive, supercoils (9), tracking of a 
protein along a DNA may thus yield a posi- 
tively supercoiled DNA (10-13). Incubation 
of relaxed DNA with various combinations of 
SpoIIIE, Escherichia coli DNA topoisomer- 
ase I, and ATP was carried out, and the 
reaction products were analyzed by agarose 
gel electrophoresis (Fig. 2A). In the presence 
of SpoIIIE, E. coli DNA topoisomerase I, and 
ATP, a DNA product was generated that 
migrated slightly faster than the negatively 
supercoiled marker (Fig. 2A). The mobility 
of this product was consistent with its being 

itively supercoiled product accounted for 10 
to 20% of the input DNA. No positively 
supercoiled DNA was produced in reactions 
in which either SpoIIIE or E. coli DNA to- 
poisomerase I was omitted (Fig. 2A). Replac- 
ing ATP by its nonhydrolyzable P,y-imido 
analog AMPPNP again abolished the forma- 
tion of the positively supercoiled product 
(Fig. 2A), suggesting that ATP hydrolysis is 
required in this reaction. 

Two types of mechanisms can account 
for the accumulation of positive supercoils 
in the DNA in these reactions. In one, 
SpoIIIE tracks along DNA to generate su- 
percoils; in the other, the protein stoichio- 
metrically binds DNA in a way that alters 
its writhe andlor twist. Whereas positive 
and negative supercoils generated by track- 

positively supercoiled, and this identity was ing are accessible to a topoisomerase, local 
confirmed by two-dimensional gel electro- changes in the writhe and/or twist of a 
phoresis (Fig. 2B). In the presence of DNA segment by its binding to a protein 
SpoIIIE, E. coli DNA topoisomerase I, and would be constrained by the protein and 
ATP, the assay product contained highly pos- could not be altered by a topoisomerase. In 
itively supercoiled DNA topoisomers, in ad- the latter case, formation of the positively 
dition to the input relaxed topoisomers (Fig. supercoiled product in the SpoIIIE reaction 
2B). In this and similar experiments, the pos- would persist even if E. coli DNA topo- 

996 3 NOVEMBER 2000 VOL 290 SCIENCE www.sciencemag.org 



isomerase I is replaced by eukaryotic DNA 
topoisomerase I, which can remove uncon-
strained positive and negative supercoils 
(14). No positively supercoiled product 
was generated when a relaxed plasmid was 
incubated with SpoIIIE, ATP, and Dro-
sophila DNA topoisomerase I (Fig. 3); nev-
ertheless, a positively supercoiled product 
was again observed in the reaction with 
SpoIIIE, ATP, and E. coli DNA topoisom-
erase I. The failure of Drosophila DNA 
topoisomerase I to substitute for the E. coli 
enzyme demonstrated that the positive su-
percoils generated by SpoIIIE were uncon-
strained, which is consistent with a mech-
anism in which SpoIIIE would generate 
positive supercoils by ATP-dependent 
tracking along the DNA. 

The ability of SpoIIIE to transport DNA 
from the mother cell to the prespore presum-
ably depends not only on the ability of its 
COOH-terminal part to track along DNA but 
also on the specific localization of the protein 
to the cell division septum. In sporulating 
cells expressing residues 2 to 183 of SpoIIIE 
fused to the green fluorescent protein, the 
fusion protein was seen to localize to the 
division septa in both vegetative and spom-

lating cells, indicating that the segment com-
prising residues 2 to 183 of SpoIIIE is suffi-
cient for the specific localization of the pro-
tein [see Web fig. 1 ( 6 ) ] .  

Although SpoIIIE is not essential for veg-
etative growth of B. subtilis, it is required 
under conditions where chromosome segre-
gation is not complete at the time of septation 
(15). The DNA tracking activity described 
here could facilitate the clearance of DNA 
from the septum, allowing cell separation 
without chromosome breakage. The COOH-
terminal and, to a lesser extent, the NH,-
terminal domains of SpoIIIE are conserveh 
across a broad range of bacteria, suggesting 
that these organisms may use a similar mech-
anism for moving chromosomal DNA away 
from division septa. SpoIIIE is also weakly 
homologous to the Tra proteins encoded by 
mobile plasmids of various Gram-positive 
bacteria (7).  It is plausible that the Tra pro-
teins catalyze DNA transfer between donor 
and recipient cells. 
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