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Untangling Dendrites with Quantitative 

Models 

ldan Segev and Michael London 

Our understanding of the function of dendrites has been greatly enriched 
by an inspiring dialogue between theory and experiments. Rather than 
functionally ignoring dendrites, representing neurons as single summing 
points, we have realized that dendrites are electrically and chemically 
distributed nonlinear units and that this has important consequences for 
interpreting experimental data and for the role of neurons in information 
processing. Here, we examine the route to unraveling some of the enigmas 
of dendrites and highlight the main insights that have been gained. Future 
directions are discussed that will enable theory and models to keep 
shedding light on dendrites, where the most fundamental input-output 
adaptive processes take place. 

It has been known since the beginning of the drites have exquisite shapes specific to dif- 
20th century that the gray matter in our cortex ferent brain regions. It was thus for the last 
is composed mostly of dendrites. that com- 100 years, and still is, very natural to wonder 
munication in cortical networks is made via "What do dendrites do?" 
connections made on dendrites. and that den- But alas, dendrites are thin (-1 pm in 

diameter) and many of them are decorated 
with thousands of even tinier "leaves"-the 
dendritic spines. Until very recently, den- 
drites were therefore inaccessible to direct 
measurements and most of what we knew 
about dendrites came from recordings made 
from the relatively large soma (cell body). 
Settling at the soma, however, was an unsat- 
isfactory deal between the experimenter and 
the concealing dendrites. The advantage is 
that the soma is a stable recording site con- 
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nected to the axon where the output, in the 
form of action potentials, is typically gener- 
ated. The disadvantage is that at the soma, the 
view is very restricted because one sits far 
from where the happening is, where synaptic 
inputs play their music with the dendrites. 

But then keen modelers demonstrated 
that with the help of a good theory it is 
possible to "peek" into the dendritic tree 
from the soma, without actually visiting 
them. This "virtual" visit provided critical 
predictions that encouraged new experi-
mental studies and vice versa. In the last 
"decade of the dendrites," tremendous tech- 
nical advances enabled us to start paying 
intimate visits to dendrites, electrically, op- 
tically and with molecular methods (1). 
Models then became essential in providing 
functional interpretations for the vast data 
that emerged from these experiments. Here, 
we review the role of theory in the progress 
that has been made during the last 40 years 
in understanding the electrical processes in 
dendrites and in unraveling their possible 
function. Dendritic research provides a ca- 
nonical demonstration that theory and mod- 
els, when closely linked to experiments, are 
indispensable for forming a comprehensive 
understanding of any complex biological 
system. 

Key Biophysical Insights Gained from 
Reduced Models of Dendrites 
Although modelers were well aware of the 
richness of dendritic structures, dendrites were 
neglected until the late 1950s. The assumption 
was that functionally, the dendritic tree could be 
represented as a single point where synaptic 
influences are summed and, if this sum reaches 
threshold, an output spike is evoked in the axon. 
This "point-neuron" model served both as the 
basis for the interpretation of experimental re- 
sults as well as for analyzing the behavior of 
neuronal networks. 

In 1959, Wilfrid Rall (2) revived the in- 
terest in dendrites by explicitly modeling 
them as membrane cylinders connected to 
each other to form a tree. As a first approx- 
imation, the membrane of these cylindrical 
core conductors was assumed to be passive. 
Current flow in such trees was described by 
the linear one-dimensional passive cable 
equation (3), 

where V is the voltage difference across the 
membrane, A = (r,/r,)"* is the space con- 
stant; v, (in ohdcm)  is the axial resistance; 
r, (in ohm . cm) is the membrane resistance; 
T, = r,c,, is the membrane time constant 
(in s), and c, (in Flcm) is the membrane 
capacitance. The mathematical challenge was 
to solve this equation for arbitrary dendritic 
geometries. The analytical solution enabled 

Rall (2) to expose the significant effect of input is a current source. With the EC, the 
dendrites on the electrical behavior of neu- apparent complexity of the tree is captured by 
rons [reviews in (4-6)]. only four key biophysical parameters, de-

rived from the original tree: (i) the cable 
Dendrites Shape the Voltage Response length L of the dendritic tree, in units of A; (ii) 
at the Soma the membrane time constant T,; (iii) the input 
The first surprise was that dendrites impose a resistance at the soma end, R,,; and (iv) the 
huge conductance load on the soma and, con- ratio between the input conductance of the 
sequently, a significant portion of the current dendrites and that of the soma, p. This equiv- 
that is applied via an electrode to the soma alence emphasizes that what shapes the syn- 
"escapes" into the dendritic tree. The result is aptic response at the soma are these key cable 
an enhancement of the charging (and dis- parameters rather than the fine details of the 
charging) rate of the soma membrane, as dendritic morphology. Although real dendrit- 
compared to the case of a soma without ic trees are not strictly equivalent to a single 
dendrites. This removed the apparent discrep- cylinder, the main insights provided by the 
ancy between the behavior of transient poten- EC approximation are relevant also to arbi- 
tials measured experimentally at the soma trary branched passive trees. 
and the predictions from the "point-neuron" The theoretical analysis also highlights 
model (see next section). the electrical consequences of the detailed 

What do passive dendrites do to the tran- geometry of the tree (17, 18). First, large 
sient current inputs that they receive via their input impedance (and consequently large lo- 
synapses? The cable properties of dendrites cal voltage change) is expected at distal thin 
(the rapid charging of their membrane capac- dendritic arbors (and distal spines), on the 
itance) filter high temporal frequencies that order of gigaohms. Second, the attenuation of 
compose the postsynaptic potentials (PSPs). the PSP strongly depends on the direction of 
In addition, a certain percentage of synaptic current flow leading to asymmetry in voltage 
current leaks out via the dendritic membrane. attenuation in the dendrites. Because of a 
As a result, the PSPs attenuate, are delayed huge current sink (axial current "loss") im-
and their time course (shape) changes as they posed by the rest of the tree on thin dendrites, 
spread from the dendrites to the soma. The a very steep voltage attenuation is expected 
farther the input from the soma, the slower from the distal synaptic input site to the soma 
the rise-time and the broader the resultant and it is generally shallower in the soma-to- 
somatic PSP (7-9). For fast PSPs, the peak dendrites direction (Fig. 1, A and B). This has 
attenuation is expected to be severe (on the important implications for the degree of in- 
order of 100-fold) and the peak should be teraction between synapses locally in the tree 
significantly delayed following propagating (the degree of electrical compartmentaliza- 
from distal dendrites to the soma (10-12). tion) as well as for the spread of action 
Indeed, it might take up to 17, (5 to 50 ms) potentials backward from soma to dendrites 
for the peak of distal PSPs to reach the soma. and forward from dendrites to soma [see 
This temporal delay in the propagation of below and review in (I)]. 
dendritic EPSPs endows neurons with the 
capability to compute the direction of motion Dendrites with Synapses: Regional 
(13-15). In contrast to the large attenuation of Nonlinearities and Electrical Scaling 
the PSPs peak, a substantial fraction of the Synapses are not current sources. Rather, 
synaptic charge (on the order of 50% for synapses impose a conductance change (open 
distal synapses) does reach the soma when ion channels) in the postsynaptic membrane, 
integrating over a duration of a few T, in thus altering the electrical properties of the 
duration. The reason is that the intracellular dendritic membrane. This hinders analytical 
(axial) resistance of dendrites is substantially solutions for passive dendrites with synapses 
smaller than the membrane resistance, so [but see (19)l. Consequently, Rall (13) devel- 
only a relatively small percentage of the syn- oped the compartmental modeling approach 
aptic charge is lost via the dendritic mem- to numerically explore nonlinear phenomena 
brane resistance. Thus, even in passive den- in dendrites. User-friendly public domain 
drites, distal synapses are expected to affect compartmental models for neurons were re- 
the output discharge at the axon. cently developed (20-23) and are used by 

Of particular importance were mathemat- experimentalists for interpreting their exper- 
ical results showing that a whole class of imental data. 
dendritic trees could be mapped into a single One consequence of the conductance 
equivalent cylinder (EC) coupled to a spher- change associated with the synaptic input is 
ical soma (16). This reduced ("ball-and that synapses interact nonlinearly with each 
stick") model captures the fundamental elec- other. Comparhnental models of passive den- 
trical phenomena found in the original trees. drites with synapses show that adjacent den- 
Specifically, the voltage response at the soma dritic synapse tend to sum less linearly with 
is identical in the original tree and in the each other, unlike distant synapses which 
corresponding EC, provided that the dendritic tend to sum linearly (Fig. 1C). This sensitiv- 
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ity to the spatial arrangement of synapses 
implies that local nonlinear synaptic opera- 
tions could be performed semi-independently 
in many dendritic subunits (Fig. 1B) (14, 24). 
Another consequence of dendritic synapses, 
first highlighted by models, is that they can 
effectively "re-scale" the cable properties of 
the dendritic tree. When thousands of syn- 
apses bombard the dendritic tree, the dendrit- 
ic membrane becomes significantly "leakier" 
and, consequently, the cable parameters of 
dendrites change dynamically; Rin and 7, 
decrease with activity whereas L increases 

ig. ID). 
In summary, synapses endow dendrites 

a dynamic flavor. Dendrites with syn- 

ity to the spatial arrangement of synapses 
implies that local nonlinear synaptic opera- 
tions could be performed semi-independently 
in many dendritic subunits (Fig. 1B) (14, 24). 
Another consequence of dendritic synapses, 

The theoretical challenge is to understand 
how the interplay between dendritic morphol- 
ogy, membrane excitability, and input condi- 
tions govern the initiation and propagation of 
APs in dendrites. Importantly, even in such 
nonlinear trees, passive cable theory provides 
key insights. In modestly excitable dendritic 
trees, spike initiation is sensitively dependent 
on the local input impedance (a passive mea- 
sure) and on the degree of axial current loss ic membrane becomes significantly "leakier" 

and, consequently, the cable parameters of 
dendrites change dynamically; Rin and 7, 
decrease with activity whereas L increases 

from the input site to other, not-yet-activated 
(still passive), dendritic regions. This current 
loss of the (already limited) excitable current 
may be so large that the remaining depolar- 
izing current is insufficient to regeneratively 
excite the local dendritic membrane (26). 

Passive cable theory shows how the input 
impedance and axial current loss depend on 
dendritic morphology (see above). In regions 
with high input impedance (e.g., spine heads) 
current threshold (the minimal input current 
required for the initiation of excitation) is 
expected to be small (because small input 
current will produce large local depolariza- 
tion). On the other hand, because thin den- 

Soma Input 

I apses constantly change electrically, modify- 
ing their input impedance and altering their 
eldctrical length like an accordion, ;n re- 
sponse to the playing of the network they are 
embedded in. The temporal resolution (sen- 
sitivity to input synchronization, which de- 
pends on the effective T,), and delay den- 
drites that impose on their synaptic potentials 
also change dynamically as a function of the 
background synaptic activity. One can there- 
fore view the "background" activity experi- 
enced by dendrites as a "context" under 
which the neuron operates. Different contexts 
imply different interpretations of the same 
input. 

dritic arbors and spines suffer huge axial loss 
of input current, the current threshold at these 
sites is increased. It is the relative contribu- 
tion of these two opposing effects that deter- 
mine how current threshold changes in the 
dendritic tree (Fig. 2A) (26-28). 

The propagation of action potentials in the 
tree is typically more secure toward distal 
dendritic branches ("backward," from soma 
to dendrites); it tends to block while spread- 
ing proximally. This is the direct result of the 
asymmetry in voltage attenuation in passive 
dendrites, as highlighted in Fig. 1, A and B 
(I). A sufficiently strong local excitatory in- 
put at distal excitable dendritic arbor is likely 

Dendrites with Voltage-Gated Ion 
Channels: Exciting but Puzzling 
Dendrites are populated with an amazing 
plethora of voltage-gated ion channels, typi- 

1. 1 cally at a modest density. Some of these ion 
channels are nonuniformly distributed over 

Fig. 1. Fundamental insights from passive cable the dendritic membrane surface Experi- theory. (A) Voltage response to a brief current 
~ulse in a sim~le branched dendritic model. show that these furnish 

to generate a regenerative response (and even 
a full AP') in only a limited distal portion of 

j~iddle) ~tteniation of voltage peak is plotted the dendrites with a rich repertoire of electri- 
for two cases; somatic input (blue) and dendrit- cal behaviors, from essentially passive re- 
ic input (red). The attenuation is asymmetric 
and is much steeper in the dendritic-to-soma 
direction (red). The voltage response at the 
input site is much larger for the dendritic input 
(large input impedance). (Bottom) Voltage 
transient at the soma for somatic input (blue) 
and dendritic input (red). The filtering effect of 
the dendrite gives rise to temporal delay and to 
an increase in half-width of the distal dendritic 
input (77, 78). (B) Electrical compartmentaliza- 
tion in passive dendrites. Current was applied 
either at a distal dendritic site (top) or at the 
soma (bottom) in a passive model of cerebellar 
Purkinje cell. Voltage spread (the "territory of 
influence") is spatially more restricted for den- 
dritic versus somatic input (red codes for peak 
voltage at the input site). (C) Sublinear sum- 
mation of synaptic inputs is less pronounced 
(saturation is reduced) when the inputs are 
distributed in different dendritic arbors (purple 
trace at bottom) (73). (D) Background synaptic 
activity dynamically rescales the cable struc- 
ture of the dendritic tree. (Bottom) 10,000 
excitatory synapses, randomly distributed and 
asynchronously activated at two spikes per sec- 
ond each (96, 97). 

- A 

sponses, to subthreshold active responses, to 
active backpropagation of the action potential 
(AP) from the soma into the dendrites, to the 
initiation of APs in the dendritic tree. Yet, we 
have only begun to explore the properties of 
the dendritic ion channels that are responsible 
for these behaviors, properties such as their 
density, spatial distribution, and kinetics. The 
analytical extension of passive cable theory 
for dendrites with nonlinear membrane is im- 
possible in most cases and difficult for the 
rest. As in the case of passive dendrites, 
nonlinear cable theory [which is yet to be 
developed; see (4, 25)] should highlight the 
key parameters that govern the electrical be- 
havior of active dendrites. Indeed, at tliese 
early stages of systematic recordings from 
dendrites, many uncertainties are obscuring 
both the experimental and the theoretical pic- 
ture of dendrites. 

The most dramatic (nonlinear) effect of 
excitable dendritic ion channels is the pres- 
ence of dendritic action potentials, APs (I). 

the tree. The relatively secure backpropaga- 
tion may give rise to an interesting backward- . - 
forward "ping-pong" game between the axon 
and the dendrites, thus creating a "handshak- 
ing" link-useful for both plastic and com- 
putational processes-between dendritic syn- 
apses and axonal output. This interaction be- 
tween soma and dendrites also has an impor- 
tant effect on network dynamics (28, 29). 
Significantly, this complicated spatio-tempo- 
ral nonlinear behavior can be captured by a 
reduced model composed of only two ("so- 
matic" and "dendritic") compartments (Fig. 
2C) (30-32). 

Compartmental models of nonlinear den- 
drites have been used to expose possible bio- 
~hvsical consequences of active channels in 
& .  

dendrites. These models show that many of 
the (apparent) constraints (e.g., attenuation, 
relatively large integration time-window) in- 
herent to passive dendrites could be over- 
come with active dendritic channels. Some of 
the ideas proposed included: active inward 
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current in dendrites may serve to (i) boost the 
synaptic potential (33, 34), (ii) reduce the 
location-dependence of the soma EPSP ex- 
pected in passive dendrites (35, 36), and (iii) 
introduce a submillisecond coincidence de- 
tection mechanism by initiating a fast den- 
dritic spike triggered by precise co-activation 
of adjacent inputs on thin dendrites (37, 38). 
Active outward current may (iv) linearize the 
synaptic current by reducing saturation (39), 
(v) scale the electrotonic structure and mod- 
ulate the temporal resolution (integration 
window) of dendrites in an activity-depen- 
dent manner, thus changing the degree of 
interaction among synapses (40) and (vi) 
serving as a "shock absorber" by dampening 
large local depolarizations generated either 
by synaptic or by excitable currents (41). 
Some of these theoretical ideas have been 
validated experimentally [e.g., synaptic 
boosting (42, 43) and coincidence detection 
in dendrites (44-46)]. Other ideas remain 
controversial [e.g., mechanisms rendering 
distal and proximal synapses equally effec- 
tive at the soma (47)l. 

An Inspiring Dialogue Between Models 
and Experiments 
Several classical successful cases established 
the necessity for an intimate interaction be- 
tween experiments and models. Experimental 
application of cable theory confirmed that 
dendrites are electrically distributed rather 
than isopotential units. The transients record- . 
ed at the soma could be fitted by a sum of 
several exponentials (48), rather than by one 
exponential as expected in "point neurons." 
The time constants associated with these ex- 
ponential~ were "peeled" from the experi- 
mental transients and used to improve esti- 
mates for the membrane time constant, 7, (5 
to 50 ms) and for the cable length of den- 
drites, L (0.5 to 2) (49). The EPSP shape 
indices (rise-time and half-width) at the soma 
were used for estimating the electrotonic dis- 
tance, Xi,, of the synaptic input in the den- 
dritic tree. Redman and Walmsley (50) found 
a remarkable match between the value of T,,, 
estimated from the shape indices and that 
calculated directly from the anatomical site of 
connection. Unlike what is expected from 
passive cable theory, in several neuron types, 
EPSPs of distal origin (delayed and broad) 
are similar in amplitude to EPSPs originating 
at proximal sites. This implies that some 
"boosting" mechanism (e.g., an increase in 
the synaptic conductance as a function of 
distance from the soma) compensates for the 
voltage attenuation expected in passive den- 
drites (47, 50). 

The dialogue with experimentalists forced 
theoreticians to further explore and refine 
their models. The most groundbreaking ex- 
ample is the computational study of the field 
potentials in the olfactory bulb, which was 

based on the gross anatomy of the bulb layers 
and the distributions of the field potentials at 
different depths of the bulb (51). Surprising- 
ly, the model predicted mitral to granule cell 
excitation followed by granule to mitral cell 
inhibition. Electron microscopy (EM) con- 
firmed the presence of reciprocal dendro- 
dendritic synapses of opposite polarities be- 
tween mitral and granule cells, dramatically 
verifying the predictions of the model and 
representing a triumph for theory. 

Theory had particular impact on our un- 
derstanding of the biophysics of the Lillipu- 
tian dendritic spines (Fig. 2A) (52,53). These 
studies suggested that spines might act as 
minute electrical and chemical compartments 
involved in modulating synaptic efficacy. 
This brought about a wealth of experimental 
studies aiming at exploring whether spine 
dimensions change dynamically (54) and 
whether spines are indeed chemical compart- 
ments (46). Two-photon microscopy now 
makes it possible to optically image spines 
and to show that these fascinating little thorns 
with bulbous heads are indeed calcium com- 
partments that may undergo activity-depen- 
dent morphological changes (55, 56). Models 
also show that the huge number of spines 
(100,000 in a single cerebellar Purkinje cell), 

I Clustered input 

which contribute significantly to the total 
membrane area of dendrites, effectively in- 
crease the cable length of dendrites and thus 
affects their integrative properties (57). 

Direct validation of the predictions of 
passive cable theory became possible with 
the use of paired recordings from the soma 
and apical dendrite of pyramidal neurons. 
The filtering effect of dendrites and direc- 
tion-dependent voltage attenuation was as- 
sessed in layer V cortical pyramidal cells 
(12) but is less pronounced in CAI pyra- 
mids (58). Note that measurements of volt- 
age attenuation have not yet been made 
from large fractions of most dendritic trees 
(the thin arbors) so that the steep voltage 
profile predicted for inputs to thin arbors 
(Fig. 1A) was not assessed experimentally. 
The effect of the background synaptic ac- 
tivity on the cable parameters was recently 
confirmed in both in vivo and in vitro 
experiments (59, 60). Finally, theoretical 
ideas regarding the role of dendritic inhibi- 
tion for computing the direction of visual 
motion (14) have stimulated intense exper- 
imental research aimed at exploring if, in- 
deed, directional selectivity in cortical neu- 
rons is associated with a significant synap- 
tic shunt (61, 62). 

Distributed input 

Fig. 2. Fundamental insights for excitable trees. (A) Dendritic spines consisting of voltage-gated 
(and/or NMDA-mediated) ion channels, in particular spines with thin and long necks, are favorable 
sites for boosting the local excitatory synaptic input and for accumulation of calcium ions (red top 
left spine) (37, 53). Spine morphology implies a significant attenuation of both voltage and for 
calcium concentration from the spine head to the spine base (picture from Synapse Web, Boston 
University, http://synapses.bu.edu/). (B) In excitable dendrites, a certain degree of spatial clustering 
of excitatory synapses (top) may result in a significant boosting of the synaptic charge that reaches 
the soma, because it produces larger local depolarization which may be sufficient for activating the 
local excitable channels. As a consequent, the axon fires more vigorously (right). In both cases, 100 
excitatory synapses were used; top, 10 clusters of 10 synapses each; bottom, clusters of 1 synapse. 
Each synapse was activated 40 timesls for 1 s. The dependence of the axon output on the degree 
of synaptic clustering in the dendrites could be used for implementing input classification task (34). 
(C) Backward-forward "ping-pong" interaction between the axon and the excitable channels in 
dendrites shapes the ~u$u<~att&n of spikes firing in the axon. Two models of a cortical pyramidal 
neuron were used: one with ~assive dendrites f to~ l  and the other with excitable dendrites fbottoml 
[excitable model as in (31)]: For passive dend'rit'2, the axon fires regularly in response tb steadi 
soma depolarization whereas in the model with excitable dendrites it fires repeated spike bursts. 
The geometry of the dendritic tree plays a crucial role in this "ping-pong" interaction, as 
demonstrated using reduced two-compartment model [left column, see (30)]. 
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Fig. 3. Computing with dendrites. Model 
(A) A model of a TC neuron in the 
fly visual system, activated by the 
Elementary Motion Detectors 
(EMD) array, in the preferred di- 
rection of motion. (B) In vivo cak 
cium imaging from the dendrites 
of TC-cell during motion of a pe- 
riodic grating in the cell's pre- 4 
ferred direction. Calcium fluctu- - 
ates within individual dendrites in 1 OOpm 
response to both changes in local 
contrast pattern as well as due to  " 2 
motion of the whole pattern. Fil- 8 
tering in the dendrites effectively 
cancels out the responses due to 
local Datterns while retaining the 

Experiment 

--m 

overail direction of motion-fur- 
thermore, to maximize efficacy of 
input integration, the fanlike den- 
dritic arbor is oriented so that 
neurons sensitive to vertical mo- 
tion have their fans aligned with 
the dorsal-ventral axis, whereas 
horizontally sensitive neurons 
have their arbors arrayed orthog- 
onally. Interestingly, the dendritic 
mechanisms used for implement- 
ing this computation (i.e., nonlinear summation of synaptic inputs, amplifications using voltagedependent ion channels) where previously proposed on 
theoretical grounds, but this is the first direct demonstration that they are indeed used to implement specific computation in dendrites. [Figure adapted from 
(m.1 
Dendritic Computation 
The computer has become more than just 
another metaphor for the brain, like other 
human made devices in the past. The com- 
puter is a unique machine in that it is univer- 
sal. We believe that it can "simulate" any 
other computation, discrete or analog, me- 
chanical or biological (63). Moreover, as Tur- 
ing so eloquently put it, mechanical simula- 
tion of intelligence cannot be distinguished 
from intelligence itself. 

The Turing machine operates in an algorith- 
mic fashion in which a series of simple opera- 
tions relates a given input to a desired output. 
Similarly, a series of operations are implement- 
ed by the nervous system before the sensory 
input is transformed to a desired behavioral 
output. These operations can be charact&d 
as computations (64). Single neurons often re- 
flect these operations; they show orientation 
selectivity, velocity tuning, coding for spatial 
location, and so forth. It is still largely an open 
question what is the role of single neurons, and 
in particular of their dendrites, in implementing 
these neuronal computations, and wheth'er the 
algorithmic framework is natural for describing 
the computations performed at the single-neu- 
ron level. 

What is clear is that dendrites and their 
synapses transform the digital presynaptic 
spike trains to an analog signal delivered to 
the axon of the postsynaptic cell. The so- 
phisticated nonlinear machinery that den- 
drites possess could, in principle, be used 
for performing nontrivial transformation 
(computations) of their synaptic input. Ev- 
idence for "low-level" processing in den- 

drites, such as filtering, amplification and 

Axon Caldum Signal \ 

coincidence detection of synaptic inputs, 
have already been demonstrated (see 
above). But are these dendritic processes 
actually used for implementing a specific 
computation? To answer this question, in 
vivo recordings during the performance of 
a specific computation are required. 

Until very recently, in vitro recordings 
from dendrite were rare, not to mention in 
vivo recordings which were extraordinary 
(65, 66). Thus, models were used to suggest 
ways in which dendrite with their synapses 
could, in principle, implement specific com- 
putation. It was suggested that dendrites 
could compute the direction of motion (13- 
15) improve sound localization (24), provide 
.gain control (67) and perform a multidimen- 
sional input classification task (68). Active 
dendrites have also been shown to produce 
spatial invariance, orientation tuning and bin- 
ocular disparity visual responses [(69, 70) 
and reviews in (71, 72)]. 

Recently, in a most impressive series of 
experiments, in vivo recording from den- 
drites was accomplished (73-76). Using 
combined imaging and electrophysiological 
methods, it is possible to infer the electrical 
activity of large portions of the dendritic 
tree. Of direct relevance to dendritic com- 
putation is the study of Borst and col- 
leagues (77-81) on the processing informa- 
tion in the fly visual system, where a pop- 
ulation of large interneurons spatially inte- 
grates the output signals of many thousands 
of columnar neurons, each being sensitive 
to a very small part of the visual scene. 

These so-called tangential cells (TCs) are 
all motion-sensitive: they become excited 
by motion in one direction and are inhibited 
by motion in the opposite direction. Using 
both intracellular recordings as well as cal- 
cium imaging from dendrites in vivo (Fig. 
3B), Borst et al. discovered two major pro- 
cessing steps implemented by. the TC den- 
drites. Through the processing of opponent 
input elements having opposite preferred 
direction, the direction selectivity of pre- 
synaptic neurons is significantly enhanced 
in the TCs. Models predict (Fig. 3A) and 
experiments confirm (Fig. 3B) (78-80) 
that dendritic filtering helps in distinguish- 
ing a change in contrast due to stimulus 
motion from changes due to purely local 
patterns of the stimulus. The result of this 
integration is a graded depolarization in the 
axon of the cells; this depolarization repre- 
sents information about image velocity 
with high fidelity (Fig. 3) (80, 81). With 
these in vivo experiments, a breakthrough 
is at our door; and we should expect that 
soon we will gain a deeper understanding 
of the extent to which dendrites contribute 
to the computations that performed by the 
nervous system. 

The Future o f  Dendrites 
Dendrites and their spines are beginning to 
surrender to the sophisticated optical and 
electrical techniques that were developed in 
the last decade. In the coming years we will 
witness intense research into dendrites (and 
probably also into axons) and their role in 
information processing will be exposed. 
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ation mechanism) on the encodingtdecoding 
capabilities of the neuron (Fig. 4) and (95). It 
is hoped that within this framework, we will 
be able to unravel the design principles by 
which the dendritic machinery is used for 
maximizing and. stabilizing information 
transmission in these fascinating building 
blocks of the nervous system. 

Peak synaptic conductance (nS) 

Fig. 4. Exploring dendritic input-output relation using information theory. (A) Reduced model of a 
neuron consisting of a passive dendritic cylinder, a soma and an excitable axon. The dendritic 
cylinder is bombarded by spontaneous background synaptic activity (400 excitatory synapses, each 
activated 10 timesls; 100 inhibitory synapses, each activated 65 timesls). When activated, each 
synapse produces a transient conductance change; the input to  each synapse is a train of 
temporally random presynaptic action potentials, modeled as a string of 0's and l's, similar to  the 
output of the postsynaptic axon. (B) Soma EPSPs for a proximal (red line) and a distal (blue line) 
synapse. (C) Two sample traces of the output spike train measured in the modeled axon. Identi'cal 
background activity was used in both cases; the location of only one excitatory synapse was 
displaced from proximal to  distal. For some time epochs, this displacement noticeably changes the 
output spike train. (D) The mutual information (MI), which measures how much could be known 
about the input (the presynaptic spike train) by observing the axonal output, is plotted as a 
function of the maximal synaptic conductance change for the three input locations. Note that the 
distal synapse transmits significantly less information compared to  the proximal synapse. For 
strong proximal synapses, the MI is saturated because, for Large conductance values, each input 
spike generates a time-locked output spike and no additional information is gained by further 
potentiating this synapse. The analysis shows that, to  a good approximation, the EPSP peak (rather 
than its time course) is the main determinant of the MI. This method could be used to 
experimentally measure information transfer in real dendrites. 

Important theoretical issues are likely to be 
encountered, three of which are highlighted 
below. 

In search of new analytical methods. Al- 
though we can numerically simulate signal 
processing in dendrites with nonlinear and 
nonuniform membrane properties, we still 
lack analytical tools for modeling such den- 
drites. While key insights have been gained 
from numerical exploration of excitable den- 
drites, experience from passive cable theory 
tells us that a comprehensive understanding 
eventually comes from analytical approaches 
(6, 82, 83). We thus hope that a new gener- 
ation of researchers, equipped with powerful 
mathematical tools, will join forces to analyt- 
ically delve into dendrites. 

Stability, plasticity and learning in den- 
drites. Dendrites are highly dynamic and 
plastic devices; their morphology (55) syn- 
apses (84, 85) and ionic channels undergo 
constant activity-dependent modulation (86). 
What are the rules that govern these modula- 
tions? How do dendrites continue to stably 
perform their computational tasks in view of 
these changes? Can we use tools from learn- 

ing theory to quantify the capabilities and 
limitations that dendrites have as a computing 
and learning device? Although initial theoret- 
ical work is under way (87-89), the road to 
understanding how dendrites learn is still 
largely uncharted. 

Noise and information capacity of den- 
drites. Models of dendrites are typically for- 
mulated using deterministic equations, there- 
by ignoring the different noise sources en- 
countered by the input signals that impinge 
on dendrites. These noise sources include 
stochastic ion-channel noise, probabilistic 
synapses, and massive "spontaneous" back- 
ground synaptic activity (90-93). We still 
lack a systematic characterization of the na- 
ture and magnitude of the neuronal noise 
involved, but we do have theoretical tools 
from statistical estimation and information 
theory to quantify the ability of neurons to 
transmit information about their inputs 
through their spike outputs in the presence of 
noise (94). Indeed, information theory could 
provide a unifying framework for assessing 
the effect of the various neuronal modules 
(synapses, dendrites, the axonal spike gener- 
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Signal-Processing Machines a t  the 

Postsynaptic Density 


Mary B. Kennedy 

Dendrites of individual neurons in the vertebrate central nervous system 
are contacted by thousands of synaptic terminals relaying information 
about the environment. The postsynaptic membrane at  each synaptic 
terminal is the first place where information is processed as it  converges 
on the dendrite. At the postsynaptic membrane of excitatory synapses, 
neurotransmitter receptors are attached to large protein "signaling ma- 
chines" that delicately regulate the strength of synaptic transmission. 
These machines are visible in the electron microscope and are called the 
postsynaptic density. By changing synaptic strength in response to neural 
activity, the postsynaptic density contributes to information processing 
and the formation of memories. 

Dendrites are the principal signal reception 
and processing sites on vertebrate neurons. 
The dendrites of each pyramidal neuron are 
highly branched and contain thousands of 
synapses made by axons from almost as 
many neurons. Most of these synapses are 
located on spines, which are tiny tubular or 
mushroom-shaped structures about 1 to 3 p,m 
long and less than 1 p,m in diameter that 
protrude from the dendritic shaft (Fig. 1). The 
typical presynaptic terminal forms a junction 
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with one, or at most two, postsynaptic spines. 
Spines are the first processing point for syn- 
aptic signals impinging on the dendrite. 
Much of the processing machinery is con-
tained in a highly organized biochemical ap- 
paratus attached to the cytosolic surface of 
the postsynaptic membrane. This protein 
complex is visible in the electron microscope 
as a thickening of the postsynaptic mem-
brane, extending approximately 30 nm into 
the cytosol; it was termed the "postsynaptic 
density" or PSD by early electron microsco- 
pists (Fig. 1) (1,2). 

Nearly all presynaptic terminals that make 
synapses on dendritic spines release the excita- 

tory neurotransmitter glutamate. The postsyn- 
aptic membrane of a typical spine contains at 
least two distinct types of glutamate receptors 
concentrated at the site of contact with the 
presynaptic terminal. a-amino-3-hydroxy-5- 
methyl-4-isoxazolepropionate (AMPAFtype 
glutamate receptors are ion channels that open 
when they bind glutamate, allowing sodium 
and potassium ions to flow across the mem- 
brane, producing a small, brief depolarization 
called the excitatory postsynaptic potential 
(EPSP). N-methyl-D-aspartate (Nh4DAktype 
glutamate receptors are also ligand-gated ion 
channels. However, opening of their larger 
channel does not occur when glutamate binds to 
it, unless the membrane is strongly depolarized 
to relieve blockade of the channel by extracel- 
lular magnesium. The required depolarization is 
larger than can be achieved by AMPA receptors 
at a single synapse. Adequate depolarization 
can, in theory, be produced by coincident firing 
of several nearby synapses or by a back-
propagating action potential (3).When the two 
conditions of glutamate binding and strong 
depolarization are met, the NMDA receptor 
channel opens and allows the flow of sodium 
and calcium ions into the cell. The resulting 
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