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lnvasive Plants Versus Their 
New and Old Neighbors: A 

Mechanism for Exotic Invasion 
Ragan M. Callaway* and Erik T. Aschehougt 

Invading exotic plants are thought t o  succeed primarily because they have 
escaped their natural enemies, not  because of novel interactions wi th  their new 
neighbors. However, we find that Centaurea diffusa, a noxious weed in  North 
America, has much stronger negative effects on grass species from North 
America than on closely related grass species from communities t o  which 
Centaurea is native. ~entaurea's advantage against North American species 
appears t o  be due t o  differences in  the effects of its root exudates and how these 
root exudates affect competition for resources. Our results may help t o  explain 
why some exotic species so successfully invade natural plant communities. 

Exotic plants threaten the integrity of agricultur- 
al and natural systems throughout the world. 
Many invasive species are not dominant com- 
petitors in their natural systems, but competi- 
tively eradicate their new neighbors. One lead- 
ing theory for the exceptional success of inva- 
sive plants is that they have escaped the natural 
enemies that hold them in check, freeing them to 
utilize their full competitive potential. This per- 
spective provides the theoretical framework for 
the widespread practice of introducing natural 
enemies as biological controls, which also are 
exotic, to suppress invasive plants (I). Plant 
communities are widely thought to be "individ- 
ualistic," composed primarily of species that 
have similar adaptations to a particular physical 
environment (2,3). With few exceptions (4-7), 
plant communities are not thought to consist of 
coevolved species, nor to possess stable proper- 
ties determined by plant-plant interactions. 
Here, we argue that some invasive plants may 
succeed because they bring novel mechanisms 
of interaction to natural plant communities. 

We compared the competitive effects of an 
invasive Eurasian forb, Centaurea d ~ f f i a  (dif-
fuse knapweed), on three bunchgrass species 
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that coexist with C. dlffusa in Eurasia with the 
effects of C. d@sa on three bunchgrass species 
from North America that have similar morphol- 
ogies and sizes, each of which is closely related 
to one of the Eurasian grass species. Seeds of C. 
dlffusa, Festuca ovina, Koeleria laerssenii, and 
Agropyron cristatum were collected within an 
area of several hectares in the southem foothills 
of the Caucasus Mountains in the Republic of 
Georgia. Seeds of F. idahoensis, K. cristata, and 
Pseudoroegneria spicata were collected from 
grasslands in the northem Rocky Mountains in 
Montana. Until recently, Pseudoroegneria was 
included in the genus Agropyron. Each of the 
grass species made up more than 10% of the 
total cover at its respective site. At the study site 
in the Caucasus, the cover of C. dzffusa was less 
than 1%,whereas at the Montana site, the cover 
of C. maculosa (which is closely related to C. 
dzffusa) was 10 to 90%. Each of the seven 
species was planted alone and in all painvise 
grass-Centaurea combinations. All combina-
tions were grown in sand and mixed with acti- 
vated carbon (8, 9). 

Centaurea dl f f ia  had much stronger nega- 
tive effects on North American species than it 
had on Eurasian species. When grown with 
Centaurea, the biomass of ~ o r t h  American 
grasses decreased 85.7 f 0.3%; whereas in 
Eurasian species, biomass decreased by only 
50.0 C 4.7% (Fig. 1 )  (10). Correspondingly, 
none of the North American grass species (nor 
all species analyzed collectively) had a signifi- 
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cant com~etitive effect on the biomass of C. 
dzffia, but the Eurasian species K. laerssenii, 
and all Eurasian species analyzed collectively, 
significantly reduced C. d ~ f f i a  biomass (Fig. 
2) (11). Centaurea d ~ f f i a  had no effect on the 
amount of 32P acquired by Eurasian grass spe- 
cies (12), but significantly reduced 32P uptake 
of all North American species (Fig. 3) (13). 
Correspondingly, North American grasses had 
no competitive effects on 32P uptake of C. 
dlffusa, but all Eurasian species demonstrated 
strong negative effects on the amount of 32P 
acquired by C. d~ffusa (Fig. 4)  (14). 

Activated carbon was added to ameliorate 
chemical effects (8), and it had contrasting ef- 
fects on the interactions between C. dz&a and 
grass species from the different continents. The 
biomass of two North American species, F. 
idahoensis and P. spicata, when grown with C. 
dzffia, increased significantly in soil mixed 
with activated carbon; the overall effect of car- 

Koe,ena -no competitor 
oCeofaurea, no carbon 
ICeoteuree, carbon 

Pseudoroegneria-Agropyron 

Montana Caucasus 

Fig. 1. Total biomass for related Eurasian and 
North American bunchgrass species grown 
alone, or with the invasive plant, C. diffusa, 
either with or without activated carbon in the 
soil. Error bars represent S.E.M. Means with 
different letters were significantly different in 
pairwise comparisons. 
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bon on North American species in competition 
with C. dlffusa was positive and significant (Fig. 
1) (10). In contrast, the biomass of all Eurasian 
grass species growing with C. dtfia was re- 
duced dramatically in the presence of activated 
carbon. Correspondingly, activated carbon gave 
C. dzffusa a competitive disadvantage against 
North American grasses (Centaurea biomass 
was reduced) but a competitive advantage in the 
presence of Eurasian grasses (Centaurea bio- 
mass increased) (Fig. 2) (12). Unlike its effect 
on total biomass, the effect of activated carbon 
was not to enhance the uptake of 32P of North 
American grasses in the presence of C. dzfisa, 
indicating that allelopathic effects were manifest 
somewhat independently from competition for 
this particular resource (Fig. 3) (13). However, 
having activated carbon in the soil was a strong 
disadvantage for Eurasian grasses competing 
for 32P with C. diffusa. In all cases, 32P uptake 
by Eurasian grasses growing with C. diffusa 
decreased in the presence of activated carbon. 
The effects of activated carbon on 32P uptake 
by grasses corresponded with the effects of 
activated carbon on 32P uptake by C. dtffusa. 
Activated carbon enhanced uptake by C. dif- 
fusa in the presence of Eurasian grasses but 
reduced uptake in the presence of North 
American grasses (Fig. 4) (14). We interpret 
the effects of activated carbon as evidence for 
allelopathy, as have others (15-1 7); however, 
activated carbon may also affect other soil prop- 
erties, as well as the soil microbial community. 

ICentaurea, carbon 

50 

0 

Montana Caucasus 

Fig. 2. Total biomass for C. diffu5a plants grown 
alone, or with Eurasian or North American bunch- 
grass species, either with or without activated 
carbon in the soil. Error bars represent S.E.M. 
Means with different letters were significantly 
different in pairwise comparisons. 

In a separate experiment (9), activated car- 
bon did not have any significant direct effect on 
the total biomass of any of the six grass species 
when they were grown alone, nor was the effect 
of carbon significant when all species were 
tested together [ANOVA, treatment, F(1,97) = 
0.53, P = 0.4711. As found in the first experi- 
ment, the Eurasian grass species were larger 
than North American grass species [region, 
F(1,97) = 13.11, P < 0.001]. 

When grown with C. dlffusa, the proportion 
of total pot biomass made up of grasses was 
greater for Eurasian (38%) than North American 
(1 1 %) species. Concomitantly, proportional bio- 
mass of C. dtffusa was less when it was grown 
with Eurasian than with North American grass- 
es. Activated carbon increased the dominance of 
C. dzffusa with Eurasian grasses (84% from 
62%) but decreased its dominance with North 
American grasses (78% from 89%). Significant 
biogeographical differences also existed for the 
total biomass and total resource uptake by both 
individuals combined within a pot. Pots with 
Eurasian grass species combined with C. dtffusa 
produced 12% more total biomass and took up 
63% more total phosphorus than pots with 
North American species planted with C. dgtrusa 
(18), suggesting that long-term association 
among plant species may enhance productivity 
and total resource utilization. 

The strong effects of biogeographical 
place of origin on the competitive ability of 
grass species against C. diffusa, as well as the 
contrasting effects of activated carbon on 

Koeleria Icarbon 1,,Si 

-.-
Montana Caucasus No 

cornpetltor competitor competitor 

Fig. 3. Total counts per minute for related Eur- 
asian and North American bunchgrass species 
grown alone, or with the invasive plant, C. diffu~a, 
either with or without activated carbon in the 
soil. Error bars represent S.E.M. Means with dif- 
ferent letters were significantly different in pair- 
wise comparisons. 

competition, suggest that C, d5ffusa produces 
chemicals to which long-term and familiar 
Eurasian neighbors have adapted, but to 
which C. dij@sa's new North American 
neighbors have not. Chemical allelopathy has 
long been suspected as a mechanism by 
which invasive plant species eliminate na-
tives (19-21). The competitive ability of Eur- 
asian grass species against C. diffuLsa is great- 
ly reduced by activated carbon, suggesting 
that the natural advantage of Eurasian species 
is, at least in part, also chemically mediated. 
In our experiments, the root systems of com- 
peting plants were constricted in pots, pre- 
venting any spatial root niche partitioning 
that might reduce competitive interactions. 

Contrasting interactions among plants 
from different biogeographical regions have 
several implications for community ecology. 
First, they suggest that natural plant commu- 
nities may be more tightly knit entities than 
generally thought. Second, these biogeo-
graphical effects conflict with the theory that 
plant competition is not species-specific (22. 
23). Third, they suggest that interactions 
among plant species may drive natural selec- 
tion in communities. Fourth, they imply that 
natural biological communities may evolve in 
some way as hnctionally organized units 
(24, 25). Finally, our results indicate that 
some exotic invasive plants may use compet- 
itive mechanisms that are not present in the 
natural communities that they invade to dis- 
rupt inherent, coevolved interactions among 
long-associated native species. 

60 Koeleria a carbon 1 
ano carbon 1 

competitor competitor competitor 

Fig. 4. Total counts per minute for C. diffusa 
plants grown alone, or with Eurasian or North 
American bunchgrass species, either with or with- 
out activated carbon in the soil. Error bars repre- 
sent S.E.M. Means with different Letters were'sig 
nificantly different in pairwise comparisons. 
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Two-Amino Acid Molecular Switch 
in an Epithelial Morphogen That 

Regulates Binding to Two Distinct 
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Ectodysplasin, a member of the tumor necrosis factor family, is encoded by the 
anhidrotic ectodermal dysplasia (EDA) gene. Mutations in EDA give rise to a 
clinical syndrome characterized by loss of hair, sweat glands, and teeth. EDA-A1 
and EDA-A2 are two isoforms of ectodysplasin that differ only by an insertion 
of two amino acids. This insertion functions to determine receptor binding 
specificity, such that EDA-A1 binds only the receptor EDAR, whereas EDA-A2 
binds only the related, but distinct, X-linked ectodysplasin-A2 receptor 
(XEDAR). In situ binding and organ culture studies indicate that EDA-A1 and 
EDA-A2 are differentially expressed and play a role in epidermal morphogenesis. 

Members of the tumor necrosis factor recep- 
tor (TNFR) superfamily are involved in a 
number of physiological and pathological re- 
sponses by activating a wide variety of intra- 
cellular signaling pathways. In a database 
search based on sequence similarity ( I ) ,  
XEDAR was initially identified as a member 
of the TNFR superfamily. 
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The deduced amino acid sequence of 
XEDAR contains three cysteine-rich repeats 
and a single transmembrane region (Fig. 1A). 
XEDAR lacks an NH,-terminal signal peptide. 
The presence of an in-frame upstream stop 
codon in both human and mouse cDNA clones 
indicated that the sequence shown in Fig. 1A 
represents the full-length open reading h  e 
(OW), (1). To c o n k  that XEDAR was in- 
\ \ ,  

deed a membrane protein, we transfected 
M C F ~cells with either an m,- or COOH-
terminal Flag-tagged version of XEDAR (Fig. 
1B). In permeabilized cells, the expression of 
both tagged proteins was detected by 
anti-Flag immmostaining. However, in the ab- 
sence of permeabilization, cell surface staining 
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