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Natural Selection and the 
imental sympatry and control lines were as- 
sayed after selection ended (18). A canonical 
discriminant analysis (19) was used to dis- . ~, 

Reinforcement of Mate Recognition play the relation between the experimental 

-	 populations in multivariate CHC space (Fig. 
2). The first two canonical variates (CV1 and 

Megan Higgie,'* Steve Chenoweth,' Mark W. Blows' CV2), accounting for 94.9% and 2.4% of the 
variation, respectively, were analyzed in uni- 

Natural selection on mate recognition may often contribute to speciation, variate split-plot analyses of variance (20). 
resulting in reproductive character displacement. Field populations of Dro- The interaction between the treatment of ex- 
sophila serrata display reproductive character displacement in cuticular hydro- perimental sympatry and whether the popu- 
carbons when sympatric with Drosophila birchii. We exposed field sympatric lations were originally allopatric or sympatric 
and allopatric populations of D. serrata to experimental sympatry with 0. birchii in the field tested if evolution in experimental 
for nine generations. Cuticular hydrocarbons of field allopatric 0. serrata pop- sympatry had occured differentially in field 
ulations evolved to resemble the field sympatric populations, whereas field allopatric and sympatric populations. Paired t 
sympatric 0. serrata populations remained unchanged. Our experiment indi- tests were used to determine if the presence 
cates that natural selection on mate recognition resulted in the field pattern of an interaction was a consequence of evo- 
of reproductive character displacement. lution in field allopatric populations, rather 

than in field sympatric populations. 
A direct role for natural selection in the gen- this species pair, mate recognition and CHC Drosophila serrata females from field allo- 
eration of reproductive isolation during spe- profile are highly genetically correlated, with patric populations exposed to experimental 
ciation is highly controversial (1-6). Natural genetic variation in CHCs accounting for over sympatry evolved toward the field sympatric 
selection may rapidly increase divergence in 70% of the genetic variation in mate recognition control populations in multivariate CHC space 
mate recognition between sympatric popula- between the two species (14). Selection on mate (Fig. 2). Univariate analysis of variance 
tions of speciating animal taxa by selecting recognition is therefore likely to result in chang- (ANOVA) conducted on female CV1 and CV2 
against hybridization between heterotypic in- es in CHC profile. The CHCs of D. serrata indicated interactions between the treatment of 
dividuals. The reinforcement of mate recog- display reproductive character displacement, experimental sympatry and whether the popu- 
nition by this process will result in the pattern changing abruptly at the sympatry-allopatry bor- lation was allopatric or sympatric in the field 
of reproductive character displacement (3), der (Fig. I), although the pattem is still con- [CVl, F(1,4) = 8.199, P = 0.046; CV2, 
where sympatric populations of closely relat- founded with geographic distribution as in many F(1,4) = 7.519, P = 0.0521. Evolution oc- 
ed species have diverged in mate recognition other examples (16). curred in field allopatric populations (paired t 
to a greater extent than allopatric populations. To test whether natural selection on mate tests: CV1, t, = 4.273, P = 0.051; CV2, t, = 

Reproductive character displacement has recognition generated the reproductive char- -5.086, P =-0.037), but not in field symp&c 
been found in a diverse range of taxa (3-9). acter displacement in the CHCs of natural populations (CV1, t2 = -1.609, P = 0.249; 
However, the pattern of reproductive character populations of D. serrata, we exposed three CV2, t2 = -0.525, P = 0.652). Drosophila 
displacement does not constitute direct evidence field sympatric and three field allopatric pop- serrata males from two of the three field allo- 
for natural selection reinforcing mate recogni- ulations of D. serrata to experimental sym- patric populations exposed to experimental 
tion (10) because it may be caused by a number patry with D. birchii for nine generations sympatry also evolved toward the field sympa- 
of other processes (3,6). In particular, it has yet (17). We predicted that if the field pattem of tric control populations. The males of the third 
to be shown that a trait which displays repro- reproductive character displacement was the field allopatric population (Wollongong) 
ductive character displacement in the field is result of natural selection on mate recognition evolved in the same direction along CV1 as the 
heritable and responds to natural selection on in sympatry, the CHCs of field allopatric first two populations but in the opposite direc- 
mate recognition within the context of an exper- populations would evolve in experimental tion on CV2 (Fig. 2). Univariate ANOVA con- 
irnent that excludes other possible causes of the sympatry, whereas those of field sympatric ducted on male CV1 indicated an interaction 
displacement. Here, we use a natural selection populations would not. The CHCs of exper- between exposure to experimental sympatry 
experiment (11) to demonstrate the role of nat- 
ural selection in the generation of a field pattem Fig. 1. Reproductive char- 
of reproductive character displacement. acter displacement in the 

Drosophila serrata and D. birchii have dif- cuticular hydrocarbons of 
ferent but overlapping distributions and habitat D. serrata. The map of 
associations along the east coast of Australia eastern Australia shows 
(12). The two species are sexually isolated by the distributions of D. 

serrata and D. birchii aspheromones composed of cuticular hydrocar- 
3. well as the positions of 

bons (CHCs) (13, 14) and hybrids are viable S ~ m ~ a t r ~  Southern limit three sympatric (H) and ...-...-...-...-...........................
and fertile (12, 13). Species in which a single Allopatry of D. birchii five allopatric (0)popula-
reproductive trait is largely responsible for mate tions of D. serrata. Popu-
recognition provide the best systems for study- lation means are from the 
ing reproductive character displacement (15). In first two canonical vari- 

ates from a canonical dis- 
criminant analysis con-
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Fig. 2. The effect of natural selection on the 
cuticular hydrocarbons of D, serrata after nine 
generations of experimental sympatry with D. 
birchii. Evolutionary responses are indicated 
from control populations (closed symbols) t o  
experimental sympatry populations (open sym- 
bols) of field allopatric populations (circles con- 
nected by solid arrow) and field sympatric pop- 
ulations (squares connected by dashed arrow). 
Numbers refer t o  localities given in Fig. 1. 

and whether the population was allopatnc or 
sympatric in the field [F(1,4)= 7.056,P = 
0.0571,which was a consequence of evolution 
in field allopatric populations (t, = -8.628, 
P = 0.013)and no change in field sympatric 
populations (t, = -0.362,P = 0.752).Male 
CV2 displayed no interaction as a consequence 
of the Wollongong population. 

Experimental sympatry resulted in the evo- 
lution of the CHCs of both sexes of D. serrata 
originating from field allopatric populations. Ln 
general, the response of both sexes was to 
evolve toward the field sympatric control pop- 
ulations. The CHCs of field sympatric popula- 
tions did not respond to the presence of D. 
birchii in experimental sympatry, indicating 
that the reproductive character displacement 
displayed in Fig. 1 was a consequence of nat- 
ural selection on mate recogmtion under field 
conditions. 

Reproductive character displacement 
evolved w i t h  nine generations, indicating that 
there was strong selection on mate recognition. 
To determine whether selection on mate recog- 
nition operated either prezygotically during 
courtship or postzygotically after hybrids were 
formed, we conducted two experiments. First, 
the frequency of successful hybridization in our 
experimental sympatry treatments was deter-
mined (21) and was found to be very low, 
suggesting that little selection was applied 
postzygotically. Second, prezygotic selection 
was assessed by determining the efficiency of 
D. sewata males in inseminating D, serrata 
females in experimental sympatry (22).Experi-
mental sympatry differentially affected the effi- 
ciency of field sympatric and field allopatric 
males in inseminating females [F(1,2)= 64.39, 
P = 0.0151(Fig. 3).Field allopatric males in- 
seminated significantly fewer females in exper- 
imental sympatry than in the allopatric controls 
(paired t test: t, = 5.179,P = 0.035),with 
nearly 50% fewer D. sewata females inseminat- 

Fig. 3. The effect of experimental sympatry on 
the efficiency of field sympatric and allopatric 
D. serrata males in inseminating D. serrata 
females. Means and 95% confidence intervals 
are based on the three field allopatric (0)and 
sympatric (m) populations. 

ed in the presence of D. birchii. In contrast, the 
number of females inseminated by field sympa- 
tric males was unaffected by experimental sym- 
patry (t, = 1.220,P = 0.347).Selection on mate 
recognition therefore operated during courtship, 
rather than after the production of hybrid indi- 
viduals with low fitness, to generate the repro- 
ductive character displacement in CHC profile. 

Although natural selection in our laboratory 
environment operated during courtshp, prezy- 
gotic selection for mate recognition may not be 
as intense under natural conditions if adult den- 
sities are lower and the larval substrate is not 
limited to a single patch (bottle). The form that 
selection takes under field conditions to result in 
reproductive character displacement in this sys- 
tem remains to be evaluated. Furthermore, this 
experiment does not indicate whether natural 
selection on mate recogmtion in sympatry was a 
component of the historical speciation event 
between D. serrata and D. birchii, but rather 
indicates how rapidly the mate recogmtion sys- 
tem of populations may evolve when confronted 
with the presence of a closely related group. The 
large number of cases of apparent reproductive 
character displacement in field populations 
across diverse taxonomic groups (3-9) suggests 
that natural selection on mate recognition may 
be a major component of the evolution of mate 
recogmtion in many animals (1). 
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lnvasive Plants Versus Their 
New and Old Neighbors: A 

Mechanism for Exotic Invasion 
Ragan M. Callaway* and Erik T. Aschehougt 

Invading exotic plants are thought t o  succeed primarily because they have 
escaped their natural enemies, not  because of novel interactions wi th  their new 
neighbors. However, we find that Centaurea diffusa, a noxious weed in  North 
America, has much stronger negative effects on grass species from North 
America than on closely related grass species from communities t o  which 
Centaurea is native. ~entaurea's advantage against North American species 
appears t o  be due t o  differences in  the effects of its root exudates and how these 
root exudates affect competition for resources. Our results may help t o  explain 
why some exotic species so successfully invade natural plant communities. 

Exotic plants threaten the integrity of agricultur- 
al and natural systems throughout the world. 
Many invasive species are not dominant com- 
petitors in their natural systems, but competi- 
tively eradicate their new neighbors. One lead- 
ing theory for the exceptional success of inva- 
sive plants is that they have escaped the natural 
enemies that hold them in check, freeing them to 
utilize their full competitive potential. This per- 
spective provides the theoretical framework for 
the widespread practice of introducing natural 
enemies as biological controls, which also are 
exotic, to suppress invasive plants (I). Plant 
communities are widely thought to be "individ- 
ualistic," composed primarily of species that 
have similar adaptations to a particular physical 
environment (2,3). With few exceptions (4-7), 
plant communities are not thought to consist of 
coevolved species, nor to possess stable proper- 
ties determined by plant-plant interactions. 
Here, we argue that some invasive plants may 
succeed because they bring novel mechanisms 
of interaction to natural plant communities. 

We compared the competitive effects of an 
invasive Eurasian forb, Centaurea d ~ f f i a  (dif-
fuse knapweed), on three bunchgrass species 
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that coexist with C. dlffusa in Eurasia with the 
effects of C. d@sa on three bunchgrass species 
from North America that have similar morphol- 
ogies and sizes, each of which is closely related 
to one of the Eurasian grass species. Seeds of C. 
dlffusa, Festuca ovina, Koeleria laerssenii, and 
Agropyron cristatum were collected within an 
area of several hectares in the southem foothills 
of the Caucasus Mountains in the Republic of 
Georgia. Seeds of F. idahoensis, K. cristata, and 
Pseudoroegneria spicata were collected from 
grasslands in the northem Rocky Mountains in 
Montana. Until recently, Pseudoroegneria was 
included in the genus Agropyron. Each of the 
grass species made up more than 10% of the 
total cover at its respective site. At the study site 
in the Caucasus, the cover of C. dzffusa was less 
than 1%,whereas at the Montana site, the cover 
of C. maculosa (which is closely related to C. 
dzffusa) was 10 to 90%. Each of the seven 
species was planted alone and in all painvise 
grass-Centaurea combinations. All combina-
tions were grown in sand and mixed with acti- 
vated carbon (8, 9). 

Centaurea dl f f ia  had much stronger nega- 
tive effects on North American species than it 
had on Eurasian species. When grown with 
Centaurea, the biomass of ~ o r t h  American 
grasses decreased 85.7 f 0.3%; whereas in 
Eurasian species, biomass decreased by only 
50.0 C 4.7% (Fig. 1 )  (10). Correspondingly, 
none of the North American grass species (nor 
all species analyzed collectively) had a signifi- 
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cant com~etitive effect on the biomass of C. 
dzffia, but the Eurasian species K. laerssenii, 
and all Eurasian species analyzed collectively, 
significantly reduced C. d ~ f f i a  biomass (Fig. 
2) (11). Centaurea d ~ f f i a  had no effect on the 
amount of 32P acquired by Eurasian grass spe- 
cies (12), but significantly reduced 32P uptake 
of all North American species (Fig. 3) (13). 
Correspondingly, North American grasses had 
no competitive effects on 32P uptake of C. 
dlffusa, but all Eurasian species demonstrated 
strong negative effects on the amount of 32P 
acquired by C. d~ffusa (Fig. 4)  (14). 

Activated carbon was added to ameliorate 
chemical effects (8), and it had contrasting ef- 
fects on the interactions between C. dz&a and 
grass species from the different continents. The 
biomass of two North American species, F. 
idahoensis and P. spicata, when grown with C. 
dzffia, increased significantly in soil mixed 
with activated carbon; the overall effect of car- 

Koe,ena -no competitor 
oCeofaurea, no carbon 
ICeoteuree, carbon 

Pseudoroegneria-Agropyron 

Montana Caucasus 

Fig. 1. Total biomass for related Eurasian and 
North American bunchgrass species grown 
alone, or with the invasive plant, C. diffusa, 
either with or without activated carbon in the 
soil. Error bars represent S.E.M. Means with 
different letters were significantly different in 
pairwise comparisons. 
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