
DFSs, either by looking at three- and four- 

events Or' by using
degrees of freedom of the photon 

pairs (23, 24). For example, one might 
employ the entangled spatial modes to rep- 
resent qubits On 

frequency techniques to produce decoher- 
ence. Finally, we can extend our investiga- 
tions to include dissipation by introducing 
controllable polarization-dependent losses. 
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Electronic Structure of Solids 
with Competing Periodic 

Potentials 

When electrons are subject to a potential with two incommensurate periods, 
translational invariance is lost, and no periodic band structure is expected. 
However, model calculations based on nearly free one-dimensional electrons 
and experimental results from high-resolution photoemission spectroscopy on 
a quasi-one-dimensional material do show dispersing band states with signa- 
tures of both periodicities. Apparent band structures are generated by the 
nonuniform distribution of electronic spectral weight over the complex eig- 
envalue spectrum. 

One of the basic tenets of solid state physics 
is that the periodicity of the crystal lattice 
determines the electronic structure (1). The 
band structure of a crystalline solid differs 
from the free-electron dispersion E(k) = 
h2k2/2m (k, wave vector; h, Planck's constant 
divided by 27r; m, electron mass) most fun- 
damentally by the effects of Bragg reflection 
on the crystal lattice, which opens gaps at the 
Brillouin zone (BZ) boundaries and folds 
back dispersion branches into the first BZ 
(1BZ). The complete band structure can then 
be represented equivalently in the reduced, 
extended, or repeated zone schemes. By con- 
trast, genuine aperiodic (glassy or amor-
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phous) systems would not show dispersing 
bands. 
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periodic? What would experimental probes 
of "band structures," such as angle-re-
solved photoemission spectroscopy 
(ARPES), observe? If the two periodicities 
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unrelated to the lattice periodicity) form 
because of electron-phonon coupling (2). 

With two incommensurate periods, 
translational invariance is lost, and the 
electronic states can no longer be classified 
according to wave numbers k. One expects 
a hierarchy of energy levels whose distri- 
bution will depend, among other factors, on 
the periods of the potential. Such level 
schemes have been calculated for a few 
theoretical problems, the most famous be- 
ing the Hofstadter butterfly spectrum of 
two-dimensional electrons in a magnetic 
field (3). Other examples include one-di- 
mensional ( lD)  quasicrystals (4) or soliton 
states in 1D Peierls models (5) .However, it 
is not clear that such complex nondisper- 
sive level structures can be observed direct- 
ly. X-ray diffraction of incommensurate 
structures still gives sharp peaks, so that the 
two underlying periodicities are correctly 
"recognized." The two problems, however, 
are not equivalent. The x-ray pattern is the 
Fourier transform of the electronic density 
distribution, whereas no similar relation ex- 
ists for the electronic structure. 

Using a simple model of 1D electrons in 
incommensurate potentials, we show that, de- 
spite the collapse of the BZ, the spectral 
weight of photoelectrons is peaked at "bands" 
close to the free-electron parabola. In an ex- 
tended zone scheme, these bands are modu- 
lated by the strength of the potentials and 
exhibit gaps at the appropriate wave vectors. 
We find similar structures in high-resolution 
ARPES experiments on a typical 1D Peierls 
material, (TaSe,),I. We observe, however, 
additional subtleties, which we explain with a 
model specific to (TaSe,),I. 

~ First, we consider 1D tight-binding elec- i -
trons (lattice constant a; Q, = 27rla) in a 
superstructure with a commensurate period 
4a (Q, = ~ 1 2 ~ ) .Such a superstructure could 
arise from a Peierls transition in a quarter- 
filled conduction band. The Hamiltonian is 
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Wave vectors 

Fig. 1. Spectral weight distribution of ID tight-
binding electrons in superstructure with period 4. 
The size of the symbols is proportional to the 
spectral weight when it is above 0.1 and is con-
stant below 0.1. The hopping matrix element is 
t = 1, and the potential amplitude is V = O.2t. 

+ [V(q)c:+qscks + H.c.l I 
The kinetic energy is ~ ( k )  = -2t cos(ka), the 
potential is V(q) = and c, describes 
electrons with momentum k and spin s (H.c., 
Hermitian conjugate). Because 4Q2 is a re- 
ciprocal lattice vector, the Hamiltonian is a 
4-by-4 matrix, which is readily diagonalized. 
Photoemission measures the single-particle 
spectral function p (k, o )  depending on wave 
vector k and frequency o ,  which we express 
as 

in terms of the components of the eigenvectors 
x, associated with the eigenvalues E, of the 
Hamiltonian 6 [. . .] is Dirac's delta function. 
Figure 1 shows this spectral function, i.e., the 
dispersion and the spectral weight distribution 
of the electronic states. The latter is proportion- 
al to the photoemission (inverse photoemission) 
intensity when the corresponding states are oc- 
cupied (unoccupied). Gaps appear at wave vec- 
tors (n + 1/2)Q2. The dispersion of the eigen- 
values follows the repeated zone scheme, but 
the spectral weight is concentrated on the ex- 
tended zone scheme dispersion. The weight 
transferred away from it depends on the ratio 
MW, where A is (half) the gap and W is the 
bandwidth. For a superstructure with period 2, 
the weight factors in Eq. 2 reduce to the coher- 
ence factors uk2, vk2 = [ l  ? ~(k)/lE(k)l]/2, as in 
the theory of superconductivity. 

We now consider the more general case of 
nearly free 1D electrons in a potential with 
incommensurate wave vectors Q, and Q,. 

Wave vector 

Fig. 2. Spectral weight distribution of I D  elec-
trons in a potential with two incommensurate 
wave vectors Q, and Q, = (51'2 - l)Q1. The 
size of the symbols indicates the spectral 
weight, as in Fig. 1. The electron mass ism = 1, 
and the potentials are V, = V, = 0.05. 

Again, for a Peierls system, Q, may be related 
to the high-temperature cryskl structure, and 
Q, = 2kF = npla would depend on the band- 
filling p = N,,IN ,,,,, i.e., the number of elec- 
trons per site. An exact solution of Eq. 1 with 
~ ( k )= h2k2/2m and V(q) = V,S,,Ql + V,S,,, 
is no longer feasible because the matrix now 
has infinite dimension. We truncate the Hamil- 
tonian at order n, where a state k is coupled to 
all states k + rQ, + sQ, with Irl + Is1 5 n. The 
band structure and spectral weight distribution 
obtained by diagonalizing the Hamiltonian 
truncated at first order are shown in Fig. 2. The 
spectral weight is concentrated on the free- 
electron parabola, and the potential opens gaps 
at Q,/2 and Q,12 and generates new, weak 
bands that bendbackward from the gap edges. 
Unlike the commensurate case, these shadow 
bands cannot be described in a repeated zone 
scheme. With increasing n,an increasing num- 
ber of bands and gaps with sizes exponentially 
small in n appear on the electronic dispersion. 
For the weak superstructures considered in our 
calculation, even for n = 2, these additional 
gaps are too small, and the intensity redistribu- 
tion that they induce is too weak to be visible on 
the scale of Fig. 2. Also, calculations with 
commensurate approximants suggest that a 
first-order truncation gives a good representa- 
tion when the potential amplitudes are weak. 
The numerous exponentially small "baby gaps" 
and the fractal structure expected in the incom- 
mensurate limit (6) then are essentially invisi- 
ble. These results are of wider validity than 
Peierls systems. Specifically, they also apply to 
1D quasicrystals whose properties are deduced 
from solving commensurate approximant struc- 
tures (4). 

When electronic weight factors are disre- 
garded and the eigenvalues of our Harniltonian 
are traced out, one recovers the nondispersive 
level schemes, i.e., the local densities of states 
discussed in the literature (4, 6). The modulation 
of these densities brought in by the piling up of 

the electronic spectral weight close to the 
"bands" of the extended zone scheme reintro- 
duces dispersion, despite the absence of period- 
icity. The physical origins are most clearly seen 
by considering a commensurate approximant. 
Here, a period n superstructure on the one hand 
is responsible for the n-fold folding of the band 
structure into the 1 BZ; on the other hand, it also 
provides a multitude of reciprocal lattice vectors 
for Bragg scattering into higher BZs. Our cal- 
culations show that the most important of those 
processes at a given energy are those that bring 
the weight back to the free-electron parabola. 

The Peierls system (TaSe,),I is a good can- 
didate for the verification of these predictions. 
This material has strongly anisotropic proper- 
ties (7), due to a 1D electronic band formed on 
TaSe, chains with a lattice constant c = 12.824 
A; c = 4a, where a is the Ta-Ta distance (and 
the notation of Fig. 1), because of the periodic 
arrangement of the Se, units around the Ta 
chain. In a purely ionic picture, 0.5 electron 
would be transferred from each Ta dl atom to 
the I ions, and the conduction band would be 
quarter filled, i.e., k, = TIC = 0.245 k l .  

However, the charge transfer between Ta and I 
is incomplete. The Ta-dz2 band is effectively 
"electron doped," and k, > TIC (8). Below 
Tp= 263 K, the system is in a CDW state (9). 
X-ray scattering shows a small deviation of k,  
from commensurability by 0.0851~1~ (10). We 
performed high-resolution (AE = 10 meV and 
hk - 0.04 kl)AWES experiments on high- 
quality single crystals with atomically clean flat 
surfaces (11). We measured a temperature at 
300 K just above T,, but because of strong 
precursor fluctuations, the CDW gap is almost 
completely developed at this temperature (12). 

The intensity map (Fig. 3A) summarizes the 
ARF'ES data for a large wave vector range 
along the chain direction. The color coding 
reproduces the photoelectron intensity normal- 
ized, for each k vector, to the acquisition time. 
A strong band disperses throughout the 1BZ 
and peaks near the zone boundaries -CIT/C. The 
line shape (not shown in Fig. 3A) has a sharp 
peak with broad tails, as in (NbSe,),I (13). We 
also observe a weaker replica (or shadow) of 
this band centered at the T' point, shifted by 
~ITIC,and even a second, faint replica around 
the r"point, shifted by 4r Ic  from r.(r,r'. 
and r" label the centers of the first, second, and 
third BZs, respectively.) The low intensity at E, 
for wave vectors close to k, is indicative of a 
deep pseudogap (14-16). There is consistency 
in the gap values with other experiments if half 
the gap is defined by the extrapolation of the 
leading edge of the ARF'ES line shape (13). 
Then, the "bad metal" state of (TaSe,),l at 
T > T p  is identified by this extrapolation 
intersecting the baseline at the chemical poten- 
tial, whereas it intersects at a finite binding 
energy in the CDW phase. A determination of 
(pseudo)gap sizes based on peak positions (1 7 )  
apparently is not permissible in ID materials. 
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Fig. 3. (A) ARPES intensity 
map [light hv = 21.2 eV (h is 
Planck's constant and v is 
photon frequency); T = 300 
K] of (TaSeJ,I along the I D  
chain direction. B.E., binding 
energy. (B) Detailed view of 
the region near the zone 
boundary. For clarity, the raw 
spectra have been normal- 
ized to the same peak inten- 
sity and.interpolated with re- 
spect to energy and wave 
vector. (C) Constant-energy 
cuts through the intensity 
map shown in (B), taken at 
equal energy intervals be- 
tween the lines marked 1 and 
13. The dashed line is a cut at 
the minimum peak binding 
energy E = E*. 

Wave vector (A-1) 

A dense sampling of the minimal binding 
energy range near TIC (Fig. 3B) shows that the 
second periodicity is also present in the band 
structure, because the turning points at the top 
and bottom of the ARF'ES intensity plot do not 
coincide. More specifically, the turning point at 
the lower edge is at k = TIC = Ql/2, and the 
turning point at the upper edge is at k = k, 
Q2/2. This is confirmed by constant-energy cuts 
through the intensity map (Fig. 3C). For large 
binding energies E < E*, two peaks (i.e., a 
band and its shadow) disperse symmetrically 
toward Q112 to a minimum peak binding energy 
E* (dashed curve), where they merge. For E > 
E*, a single peak disperses further toward the 
chemical potential until it reaches Q2/2. We did 
observe a symmetric behavior at k = - ~ r / c  (not 
shown in Fig. 3C), whereas the much weaker 
intensity forbids a similar fine analysis at the 
turning points of the shadow bands. The two 
periodicities observed by AWES precisely 
agree with x-ray results (IO). They become 
consistent with band structure calculationi (8) 
only if the latter are reinterpreted in the extend- 
ed zone scheme. 

The experimental spectrum contains the 
basic features of Fig. 2. We observe disper- 
sion maxima coming from the two periodici- 
ties, at the expected locations in k space. One 
periodicity (Q,), however, is clearly predom- 
inating, and we observe it over an extended 
range of k vectors, despite the system being 
nonperiodic in a strict sense. The Q, period- 
icity is only revealed near the top of the 
dispersion, and there is no extended counter- 
part in the higher BZs. Apparently, the puzzle 
of the two competing periods is resolved by 
the unequal distribution of spectral weight 
over the electronic bands. Although band 

structure calculations usually determine only 
the eigenvalues of the Harniltonian, with 
ARF'ES, one can observe both the eigenvalues 
and their weight, obtained from the eigenvec- 
tors. There are some subtleties in the ARPES 
spectrum of (TaSe,),I, which cannot directly be 
addressed by our model of one electronic band 
subject to two incommensurate potentials. The 
intensity of the shadow bands in the second and 
higher BZs is indicative of a strong potential 
with period Q, and a large gap at TIC. From 
such a strong potential, we then expect strong 
shadows of the band states between Ql/2 and 
Q2/2, in the momentum range (Q, - Q2/2, Ql/2) 
for which we have no evidence. 

A more detailed analysis would consider 
the specific properties of the material. Anal- 
ogous to (NbSe,),I (13), the ARPES line can 
be decomposed into two separate features 
-0.25 eV apart. The presence of two chains 
per unit cell (8) suggests a two-leg ladder of 
TaSe, as the basic building block of the 
system. The two ARPES features then are 
naturally associated with the bonding' and 
antibonding ladder states. Such a Peierls lad- 
der may be in a regime where each of the two 
incommensurate potentials of the superstruc- 
ture couples to one ladder band separately 
and where one of the periods remains com- 
mensurate with the crystal lattice. The spec- 
tral function of this model is calculated by a 
direct generalization of Eqs. 1 and 2 to ladder 
systems. The band dispersion and spectral 
weight distribution for such a situation (Fig. 
4) are indeed consistent with the experiment. 

Whereas band structure calculations always 
exhibit the full translational invariance of the 
crystal potential, this is not necessarily true for 
experiment. There can be cases where the sys- 

dc  
Wave vector 

Fig. 4. Dispersion and spectral weight distribu- 
tion for a slightly doped Peierls ladder. Extrema 
occur at Q,/2 = TIC and Q,/2 = k,, analogous 
with the ARPES results for (TaSeJ I of Fig. 3. 
The size of the symbols represents h e  spectral 
weight, as in Fig. 1. 

tem is strictly periodic but the spectral weight is 
not, and what is left of periodicity is the disper- 
sion of weak shadow bands. Conversely, sys- 
tems that are nonperiodic in a strict sense may 
exhibit hints of periodicity because of the k- 
dependent weight in the shadow bands. ARF'ES 
shows that this situation is realized in 1D 
Peierls compounds like (TaSe,),I. Fine details 
of our experiment suggest, however, that the 
two potentials are coupled to the bonding and 
antibonding ladder bands separately. We pre- 
dict that similar dispersing electronic states 
ought to be observed in 1D quasicrystals. 
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