
a beam in a biased crystal with An, = 6 X 
lop4 and with a ratio between the peak in- 
tensity and the saturation intensity, I(O)lISar = 
3, patterns form in several regions on the 
beam (Fig. 3). At the flat top of the beam, low 
visibility stripes appear. In this region, the 
nonlinearity is above threshold but in rather 
deep saturation, so the MI growth rate is 
suppressed. Then, at the margins of the beam, 
where the local ratio I(r) + Isatis around and 
slightly below unity, high-visibility stripes 
appear. In this region, the nonlinearity is 
above threshold and is not saturated, so the 
MI growth rate is large. Lastly, at the far 
margins of the beam, the local nonlinearity is 
below threshold, because I(r) << I,,. A by-
product of this particular experiment is the 
clear evidence (Fig. 3) that the ID stripes 
emerge at different orientations and are not 
affected much by the local noise (striations). 

We would also llke to relate our nonlinear 
optical system to other nonlinear systems of 
weakly correlated particles. Our prediction and 
experimental observation implies that in such 
systems patterns will form spontaneously, pro- 
vided the nonlinearity is larger than a threshold 
value, which in turn is set by the correlation 
distance. For example, we expect that 1D and 
2D patterns will form in an atomic gas at tem- 
peratures slightly above the Bose-Einstein con- 
densation temperature (at which the atoms pos- 
sess independent degrees of freedom, yet are 
still weakly correlated). At least for atoms with 
attractive collision forces, whether natural [e.g., 
'Li (23)] or through magnetic tuning of the 
condensate self-interaction (24), such patterns 
should form. The equation governing the evo- 
lution of the "mean field" of an atomic gas is 
the Gross-Pitaevski equation (25), which al- 
most fully coincides with the nonlinear wave 
equation that gives rise to (1 +1)D Kerr soli- 
tons. The relevance of this work to cooled 
atomic gases is therefore obvious. In other areas 
of physics there are, in fact, at least some hints 
that such patterns do exist in disordered many- 
body nonlinear systems. To be specific, several 
experimental papers have reported a large an- 
isotropy in the resistivity of a 2D electron sys- 
tem with weak disorder (26). The observed 
anisotropy is now attributed to the combination 
of nonlinear transport and weak disorder (27, 
28), which is the transport equivalent of non- 
linearity and incoherence in optical systems 
such as ours. The theoretical works predict the 
existence of ID stripes (electron stripes) of 
charge density wave. Spontaneous formation of 
stripes was also predicted and observed in high-
T, (superconducting transition temperature ) su-
perconductors (29),which is again a nonlinear 
weakly correlated many-body system. Lastly, 
as discussed in (a), spontaneously forming pat- 
terns are known in at least one system of clas- 
sical particles: a gravitational system. The spon- 
taneous emergence of patterns in all of these 
diverse fields of science indicates that pattern 

formation in nonlinear weakly correlated sys- 
tems is a universal property. It is a gift of nature 
that in optics we can study directly, visualizing 
every little detail of the physics involved and 
isolating the underlying effects. 
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Experimental Verification of 

Decoherence-Free Subspaces 


Paul G. Kwiat,'* Andrew J. Berglund,'? Joseph B. Altepeter,' 

Andrew G. White's2 


Using spontaneous parametric down-conversion, we produce polarization-en- 
tangled states of two photons and characterize them using two-photon to- 
mography to measure the density matrix. A controllable decoherence is im- 
posed on the states by passing the photons through thick, adjustable birefrin- 
gent elements. When the system is subject to collective decoherence, one 
particular entangled state is seen to be decoherence-free, as predicted by 
theory. Such decoherence-free systems may have an important role for the 
future of quantum computation and information processing. 

Quantum computation holds the promise of 
greatly enhanced speeds for solving certain 
problems, including factoring ( I ) ,  simulation 
of quantum systems (2, 3), and database 
searching (4, 5). One main obstacle to quan- 
tum computation is the problem of decoher- 
ence-fragile quantum superpositions are de- 
stroyed by unwanted coupling to the environ- 
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ment. In particular, it is the entangling of the 
quantum system to unobserved degrees of 
freedom that leads to a loss of coherence. (A  
related problem is that of dissipation, where- 
by energy is lost from the system.) Three 
basic strategies to cope with decoherence in 
quantum computation have emerged. The 
first, quantum error correcting codes, relies 
on trying to detect errors using ancillary 
quantum bits (qubits) and actively manipulat- 
ing the interactions to correct these errors (6, 
7). The second strategy employs dynamical 
decoupling, in which rapid switching is used 
to average out the effects of a relatively slow- 
ly decohering environment (8). The final ap- 
proach attempts to embed the logical qubits 
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into a part of the overall Hilbert space that is 
inherently immune to noise, a "decoherence-
free subspace" (DFS) (9-16) (typically, such 
a system is also "dissipation-free"). It has 
been shown that it should be possible to 
perform quantum computation operations 
without taking the system out of the DFS (12, 
13, 15) and that the DFS is robust with 
respect to perturbations in the interactions 
(12, 14). Here, we present an experimental 
demonstration of the existence of a DFS, 
using entangled photons as our qubits. 

The usual condition for a DFS is that the 
qubits under consideration are subject to col
lective decoherence—the disturbances affect
ing them are identical, as each individual 
qubit couples to the environment "bath" in 
the same way. When the system-environment 
interactions possess this sort of permutation 
symmetry, the decoherence-free states also 
display symmetry (e.g., are maximally entan
gled). This is a particular example of the 
more general requirement that some symme
try in the system-environment interaction de
couples the DFS from the environment. Al
though not always applicable, this model of 
decoherence is nevertheless relevant for some 
implementations of quantum information 
processing, for instance, if the qubits are 
physically very close to each other and the 
environment cannot distinguish them. 

Although formally one needs density matri
ces to describe a state after interaction with an 
environment, it is illustrative to view the action 
of the environment as adding a random phase 
shift (<()) to each term in the state. For example, 
a decohering environment acting in the 0/1 
basis will take |0> + |l> -> ei<<M\0) + e«+l>\l) 
= e««*>[|0> + e*<*i>-<«*>>|i)]. The global phase 
is unobservable, but if the phases (<$>0) and (cf̂ ) 
are truly uncorrected, then the qubit will be left 
in a mixed state; that is, the off-diagonal ele
ments of the density matrix will vanish because 
of averaging over the random phases. 

Consider two qubits in the "singlet" state 
|i|r> = (|01> - |10»/V2. After coupling to 
the environment 

M O • " > (e*«*\0)e«+l)\l) 

- e'^We^lO))/ft 
= c'«W + < * i » ( | o i ) - | i o » / > ^ (1) 

Because the global phase is unobservable, the 
initial state is preserved. One can now readily 
see why the decoherence needs to be collec
tive: the phase will only factor out if the 
induced phases on qubit 1 are the same as 
those on qubit 2, as we implicitly assumed 
above. 

The same argument predicts that the 
state |i|i+) = (|01> + |10>)/V2 is also de-
coherence-free. This is true if the environ
ment acts only in the 0/1 basis (a "pure 
dephasing" environment) and, under this 
condition, the states |i|i±) span a two-di-
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mensional DFS, which may then be used as 
a logical qubit. However, an environment 
that acts in the diagonal basis, given by |±) 
= (|0> ± |1»/V2, causes "flipping" errors; 
a 0 can become a 1, and vice versa. Under 
this sort of collective decoherence, |i|i+) is 
not decoherence-free, for |I|J+) = (| + +) -
| ))/V2, which is completely decohered 
by the environment. 

We can characterize the robustness of an 
arbitrary initial state i ^ by calculating its over
lap with the state after decoherence. This is the 
fidelity F = <*Jp0JipJ, where pout is the final 
density matrix. If the input is not completely 
pure, as is typically the case for any experimen
tally produced state, we use the general defini
tion F = [TitVp^p^VpT)^]2 (17). For each 
of the four "Bell states" [i|i± = (01 ± 10)/V2; 
<$>* = (00 ± 11)/V2], the fidelity is plotted 
(Fig. 1) as a function of the basis angle 6 of the 
collective decoherence (6 defines the two or
thogonal linear polarization states between 
which the random phase shift is applied; for 
example, 6 = 0° means decoherence in the 0/1 
basis, 6 = 45° means decoherence in the +/— 
basis, etc.). As expected, the singlet state i|i~ is 
always decoherence free (even in elliptical 
bases, because it always has the same antisym
metric form). In contrast, the state <$>+ deco
heres in any (linear) basis, where it has the same 
form, |ee) + le-'e-1-). The minimum fidelity 
resulting from this sort of collective decoher
ence is F = 0.33, for the states <|>- and i|i+ at 
6 = 17.6° and 27.4°, respectively. This does not 
result simply because of a unitary transforma
tion (e.g., a rotation) of the state; a plot of 
T^Pout) yields similar results, confkming that 
the dips truly arise from decoherence. 

In order to have more than one state that 
is decoherence-free in all bases, one needs 
to have at least four entangled qubits (77) 
[though more recently it has been shown 
that three suffice to make a "noiseless sub
system" (18)]. However, for our proof-of-
principle experiment, we restrict ourselves 
to the simplest system supporting a DFS: 
two qubits. Our qubits are represented by 
the polarization states ("0" = H = horizon
tal; " 1 " = V = vertical) of two correlated 
photons. The photon pairs are produced via 
the process of spontaneous parametric 

down-conversion in two thin, adjacent, 
nonlinear optical crystals [beta-barium-bo-
rate (BBO)] cut for type I phase matching 
(19). Inside the crystals, an ultraviolet 
pump photon (at 351 nm, produced from an 
80-mW argon ion laser) may spontaneously 
split into two correlated daughter photons, 
emitted into different spatial modes. Be
cause of energy conservation, the sum of 
the frequencies of these photons must equal 
that of the (monochromatic) parent photon; 
thus, the photons' frequencies are entan
gled. 

Because of the details of the conversion 
process, an incident pump photon polarized 
at 45° will have equal probability amplitudes 
to down-convert in the first crystal, produc
ing two H-polarized photons, or in the second 
crystal, producing two V-polarized photons. 
The coherence and high spatial overlap be
tween these two processes lead to a very pure 
[—99% (19)] maximally entangled state 
(|HH) + | W » / V 2 . The other Bell states 
may be produced simply by exchanging H <-» 
V in one arm and/or imposing a birefringent 
phase shift: H -> H; V -> - V. 

The quantum mechanical state of the pho
tons is characterized by tomographically 
measuring the density matrix or, more pre
cisely, the two-photon contribution to the 
reduced density matrix corresponding to the 
polarization. This distinction will be impor
tant later. In essence, we determine the two-
photon analogs of the usual Stokes parame
ters [see e.g., (20)] characterizing the polar
ization state of a single photon. We measure 
polarization correlations between the two 
photons for 16 analysis settings (e.g., HH, 
HV, 45°V, etc.), allowing reconstruction of 
the density matrix (21). 

Experimentally, adjustable quarter- and 
half-wave plates and polarizing beam split
ters in the two down-conversion beams allow 
polarization analysis in any basis (Fig. 2). 
The photons are detected by using silicon 
avalanche photodiodes operated in the geiger 
mode. Each detector is preceded by a small 
iris to define the spatial mode, a narrowband 
interference filter [centered at 702 nm, with a 
full width at half maximum of 5 nm (10 nm) 
in path 1 (path 2)] to reduce background and 
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Fig. 1. Theoretically 
calculated fidelity of fi
nal state with initial 
Bell state, after collec
tive decoherence in 
the (linear-polariza
tion) basis 0/0-1-. The 
fidelity between any 
Bell state and a com
pletely mixed state is 
0.25; the minimum 
predicted fidelities are 
0.33. 
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Fig. 2. Experimental ar- 
rangement used to in- 
vestigate DFSs. Polar- 
ization-entangled pho- 
tons are produced via 
spontaneous down- 
conversion in the adja- 
cent nonlinear crystals 
(BBO). Half-waveplates 
(HWPI and HWP2) are 
used to DreDare the 

Bell state Collective Tomographic I selector /decoherence / analyzer / 1 2:; ( 
four Bell &ti;. The de- 
cohering elements are -10-mm samples of quarh; the element in path 1 is oriented at 17O, and the 
element in path 2 is at 17' + 90° = 107O, to permit collective decoherence in the presence of the 
intrinsic energy entanglement of the photons. The quartz separates the ordinary and extraordinary 
polarization components by more than the coherence length of the photons, determined by the 
interference filter (IF) before each detector. The final quarter-waveplate (QWP) and half-waveplate 
(HWP) in each arm, along with polarizing beam splitters (PBS), enable analysis of the polarization 
correlations in any basis, allowing tomographic reconstruction of the density matrix. 

define the bandwidth of the photons, and a system of interest and the "environment" de- 
collection lens. The detector outputs are re- grees of freedom, is in a pure state, the re- 
corded in coincidence using a time-to-ampli- duced density matrix of the quantum system 
tude converter and a single-channel analyzer, alone (obtained by tracing over the environ- 
leading to an effective coincidence window ment) can be in a (partially) mixed state. Our 
of -5 ns; the resulting rate of accidental quartz elements entangle the relative phase 
coincidences was less than 0.3 s-l, compared between the two production processes (in 
to the typical rate of true coincidences, 30 down-conversion crystal 1 or 2) with the 
s-l. photon's frequency. In the end, we trace over 

The decoherence in our system is intro- this degree of freedom; that is,' we do not 
duced as follows: In each arm, the photon 
passes through a -10-rnm-thick piece of 
quartz, with optic axis in the plane of the 
element. With this thickness, the ordinary and 
extraordinary polarization components are 
separated by 140h0, where X, is the central 
wavelength of the photons (the plates were 
tilt adjusted so that the relative phase modulo 
360" was zero). The coherence length of the 
photons (determined by the frequency filters 
and irises) is also -140X0. Consequently, 
after passing through the quartz, the ordinary 
and extraordinary polarization components 
acquire a random relative phase. When we 
detect the photons, we essentially trace over 

measure it, because our detectors are insen- 
sitive to wavelength (over the collection 
bandwidth). [The curves in Fig. 1 can be 
calculated by coupling the qubits' states to 
an imaginary measuring device and tracing 
over its final state or, alternatively, by us- 
ing the total (polarization + frequency) 
state of the down-conversion photons, 
transformed by the quartz, and tracing over 
frequency (22). The resulting identical den- 
sity matrices validate our technique for in- 
troducing decoherence.] 

By setting the angles of the quartz ele- 
ments appropriately, we can introduce "col- 
lective" decoherence in any desired (linear) 

the frequency degree of freedom, which plays basis. There is one subtlety: It is actually 
the role of the "environment," and the result- necessary to orient the pieces at 90" to each 
ing (reduced) density matrix for the polariza- other, so that the decoherence effects are the 
tion becomes mixed. same. By reversing the roles of the fast and 

Actually, all decoherence is of precisely slow axes in the quartz, one compensates for 
this sort: coupling to unobserved (and often the frequency anticorrelations intrinsic to the 
unobservable) degrees of freedom. Although down-conversion pairs (22). Otherwise, 4+ 
the total state, including both the quantum appears to be the DFS. 

Table 1. Summary of DFS data for the four Bell states, before and after collective decoherence (in the 
17O basis). The Feu,,,, and Feu,,,, columns list the fidelity of the final state with the target Bell state 
and with the experimentally produced iliitial state, respectively; the F,,,,, column lists the theoretically 
expected value; and the Fout-theo, column lists the fidelity of the final state with the theoretical 
prediction. 

Bell state Fout-pure* Fout-init* Ftheoryt Fout-theory* 

'Uncertainties due to counting statistics. tuncertainty due to a 0 . 5 O  uncertainty in the basis orientation 0 of the 
decohering elements. From Fig. 1, we see that JI+ is most affected, whereas ++ and $- are totally unaffected. 

Fig. 3. Experimentally measured density matri- 
ces for the Bell states (A) HH + W, (B) HH - 
W, (C) HV + VH, and (D) HV - VH. The left 
panels represent the input states without de- 
coherence; the right panels represent the re- 
sulting states after collective decoherence is 
applied in the 17" basis. Only the real parts are 
shown; the imaginary components, which the- 
oretically are strictly zero, were always less 
than a few percent. 

Figure 3 shows the measured density 
matrices for the Bell states. On the left are 
the states without decoherence, and on the 
right are the states after being decohered by 
quartz pieces at 17" (and 107"). The singlet 
state +- is nearly perfectly preserved. This 
is made more quantitative by the measured 
fidelities, listed in Table 1. In all cases, 
there is excellent agreement between exper- 
iment and theory. 

Our results demonstrate that we can ex- 
perimentally and quantitatively study vari- 
ous aspects regarding error-free subspaces 
(of small quantum systems), with measure-. 
ment accuracies at the Dercent level. For 
example, the effect of noncollective deco- 
herence can be studied by changing the 
relative thickness and/or orientation of our 
"environments." The rate of decoherence 
can be very simply altered by changing the 
degree to which we trace out the environ- 
mental degrees of freedom, i.e., by adjust- 
ing the frequency bandwidth of the collec- 
tion filters. Moreover, we expect that we 
can readily examine the case of larger 
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DFSs, either by looking at three- and four- 

events Or' by using
degrees of freedom of the photon 

pairs (23, 24). For example, one might 
employ the entangled spatial modes to rep- 
resent qubits On 

frequency techniques to produce decoher- 
ence. Finally, we can extend our investiga- 
tions to include dissipation by introducing 
controllable polarization-dependent losses. 
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Electronic Structure of Solids 
with Competing Periodic 

Potentials 

When electrons are subject to a potential with two incommensurate periods, 
translational invariance is lost, and no periodic band structure is expected. 
However, model calculations based on nearly free one-dimensional electrons 
and experimental results from high-resolution photoemission spectroscopy on 
a quasi-one-dimensional material do show dispersing band states with signa- 
tures of both periodicities. Apparent band structures are generated by the 
nonuniform distribution of electronic spectral weight over the complex eig- 
envalue spectrum. 

One of the basic tenets of solid state physics 
is that the periodicity of the crystal lattice 
determines the electronic structure (1). The 
band structure of a crystalline solid differs 
from the free-electron dispersion E(k) = 
h2k2/2m (k, wave vector; h, Planck's constant 
divided by 27r; m, electron mass) most fun- 
damentally by the effects of Bragg reflection 
on the crystal lattice, which opens gaps at the 
Brillouin zone (BZ) boundaries and folds 
back dispersion branches into the first BZ 
(1BZ). The complete band structure can then 
be represented equivalently in the reduced, 
extended, or repeated zone schemes. By con- 
trast, genuine aperiodic (glassy or amor-
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phous) systems would not show dispersing 
bands. 

Important questions for the understand- 
ing of band structures are, What are the 
states of electrons in quasiperiodic systems, 
or in a potential with two competing, in- 
commensurate periodicities? Are they still 
periodic? What would experimental probes 
of "band structures," such as angle-re-
solved photoemission spectroscopy 
(ARPES), observe? If the two periodicities 
Q, and Q, are commensurate (Q,/Q, is a 
rational number) or can be reduced to a 
commensurate approximant, one can recov- 
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unrelated to the lattice periodicity) form 
because of electron-phonon coupling (2). 

With two incommensurate periods, 
translational invariance is lost, and the 
electronic states can no longer be classified 
according to wave numbers k. One expects 
a hierarchy of energy levels whose distri- 
bution will depend, among other factors, on 
the periods of the potential. Such level 
schemes have been calculated for a few 
theoretical problems, the most famous be- 
ing the Hofstadter butterfly spectrum of 
two-dimensional electrons in a magnetic 
field (3). Other examples include one-di- 
mensional ( lD)  quasicrystals (4) or soliton 
states in 1D Peierls models (5) .However, it 
is not clear that such complex nondisper- 
sive level structures can be observed direct- 
ly. X-ray diffraction of incommensurate 
structures still gives sharp peaks, so that the 
two underlying periodicities are correctly 
"recognized." The two problems, however, 
are not equivalent. The x-ray pattern is the 
Fourier transform of the electronic density 
distribution, whereas no similar relation ex- 
ists for the electronic structure. 

Using a simple model of 1D electrons in 
incommensurate potentials, we show that, de- 
spite the collapse of the BZ, the spectral 
weight of photoelectrons is peaked at "bands" 
close to the free-electron parabola. In an ex- 
tended zone scheme, these bands are modu- 
lated by the strength of the potentials and 
exhibit gaps at the appropriate wave vectors. 
We find similar structures in high-resolution 
ARPES experiments on a typical 1D Peierls 
material, (TaSe,),I. We observe, however, 
additional subtleties, which we explain with a 
model specific to (TaSe,),I. 

~ First, we consider 1D tight-binding elec- i -
trons (lattice constant a; Q, = 27rla) in a 
superstructure with a commensurate period 
4a (Q, = ~ 1 2 ~ ) .Such a superstructure could 
arise from a Peierls transition in a quarter- 
filled conduction band. The Hamiltonian is 
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