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We report on the experimental observation of modulation instability of par- 
tially spatially incoherent light beams in noninstantaneous nonlinear media and 
show that in such systems patterns can form spontaneously from noise. In- 
coherent modulation instability occurs above a specific threshold that depends 
on the coherence properties (correlation distance) of the wave packet and leads 
to a periodic train of one-dimensional filaments. At a higher value of nonlin- 
earity, the incoherent one-dimensional filaments display a two-dimensional 
instability and break up into self-ordered arrays of light spots. This discovery 
of incoherent pattern formation reflects on many other nonlinear systems 
beyond optics. It implies that patterns can form spontaneously (from noise) in 
diverse nonlinear many-body systems involving weakly correlated particles, 
such as atomic gases at (or near) Bose-Einstein condensation temperatures and 
electrons in semiconductors at the vicinity of the quantum Hall regime. 

Modulation Instability (MI) is a process that 
appears in most nonlinear wave systems. Be- 
cause of MI, small amplitude and phase per- 
turbations (from noise) grow rapidly under 
the combined effects of nonlinearity and dif- 
fraction (or dispersion, in the temporal do- 
main). As a result, a broad optical beam [or a 
quasi-continuous wave (quasi-CW) pulse] 
tends to disintegrate during propagation (1- 
4), leading to filamentation (5, 6) or to break 
up into pulse trains (1-4). MI typically oc-
curs in the same parameter region where 
another universal phenomenon, soliton oc-
currence, is observed. Solitons are stationary 
localized wave packets (wave packets that 
never broaden) that share many features with 
real particles. For example, their total energy 
and momentum is conserved even when they 
interact with one another ( 7 ) .Solitons can be 
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intuitively understood as a result of the bal- 
ance between the broadening tendency of 
diffraction (or dispersion) and nonlinear self- 
focusing. A soliton forms when the localized 
wave packet induces a potential (via the non- 
linearity) and "captures" itself in it, thus be- 
coming a bound state in its own induced 
potential. In the spatial domain of optics, a 
spatial soliton forms when a very narrow 
optical beam induces (through self-focusing) 
a waveguide structure and guides itself in its 
own induced waveguide. The relation be- 
tween MI and solitons is best manifested in 
the fact that the filaments (or the pulse trains) 
that emerge from the MI process are actually 
trains of almost ideal solitons. Therefore, MI 
can be considered to be a precursor to soliton 
formation. To date, MI has been systemati- 
cally investigated in connection with numer- 
ous nonlinear processes. Yet traditionally, it 
was always believed that MI is inherently a 
coherent process and can only appear in non- 
linear systems with a perfect degree of spatial 
and temporal coherence. On the other hand, 
recent theoretical work (8) has shown that MI 
can also exist in relation with partially inco- 
herent wave packets or beams. This in turn 
leads to several important new features: in- 
coherent MI appears only if the "strength" of 
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the nonlinearity exceeds a well-defined 
threshold that depends on the degree of spa- 
tial correlation (coherence). Moreover, by ap- 
propriately suppressing MI, new families of 
solitons are possible that have no counterpart 
whatsoever in the coherent regime (9). Here, 
we present the experimental observation of 
modulation instability and pattern formation 
in partially spatially incoherent light beams in 
nonlinear media. 

Until a few years ago, solitons were con- 
sidered to be solely coherent entities. How- 
ever, experimental observations of solitons 
made of partially spatially incoherent light 
(10) and of temporally and spatially incoher- 
ent ("white") light (11) have proven that in- 
coherent solitons do exist, and such observa- 
tions have opened entirely new directions in 
the field of solitons. Numerous theoretical 
and experimental works followed soon there- 
after, describing bright (1 2-1 5) and dark (1 6, 
17) incoherent solitons, their interactions 
(It?), and stability properties (19). The exis- 
tence of incoherent solitons proves that self- 
focusing is possible not only for coherent 
wave packets but also for wave packets upon 
which the phase is random. The key to their 
existence is the noninstantaneous nature of 
the nonlinearity, which responds only to the 
beam's time-averaged intensity structure and 
not to the instantaneous highly speckled and 
fragmented wavefront. In other words, the 
response time of the nonlinear medium must 
be much longer than the average time of 
phase fluctuations across the beam. Thus, the 
time-averaged intensity induces, through the 
nonlinearity, a multimode waveguide stmc- 
ture (a potential well that can bind many 
states), whose guided modes are populated by 
the optical field with its instantaneous speck- 
led structure. With this noninstantaneous na- 
ture of the nonlinearity in mind, we were 
motivated to find out whether patterns can 
form spontaneously on a partially coherent 
uniform beam through the interplay between 
nonlinearity and diffraction. As a first step, 
we have shown theoretically (8) that a uni- 
form partially incoherent wave front is unsta- 
ble in such media, provided that the nonlin- 
earity exceeds a well-defined threshold set by 
the coherence properties. Above that thresh- 
old, MI should occur, and patterns should 
form. 

www.sciencemag.org SCIENCE VOL 290 20 OCTOBER 2000 	 495 

mailto:msegev@techunix.technion.ac.il


The main predictions of the incoherent MI 
theory (8) are as follows. (i) The existence of 
a sharp threshold for the nonlinear index 
change, below which perturbations (noise) on 
top of a uniform input beam decay and above 
which a quasi-periodic pattern forms. (ii) The 
threshold depends on the coherence proper- 
ties of the input beam: the threshold increases 
with decreasing correlation distance (decreas- 
ing spatial coherence). (iii) Saturation alone, 
although it keeps the maximum index change 
and correlation distance f ~ e d ,  arrests the 
growth rate of the MI and can decrease it to 
below the MI threshold. In what follows, we 
describe our experimental results that con- 
firm all of these predictions and also reveal 
other unexpected features. 

In our incoherent MI experiments, we use 
a strontium-barium niobate crystal and use its 
photorefractive screening nonlinearity (2& 
22). The dimensions of the sample are a by b 
by c = 7.0 mm by 6.5 mm by 8.0 mm, where 
light propagation is along the crystalline a- 
axis and the external electric bias field is 
applied along the c-axis. At moderate inten- 
sities (1 W/cm2), the response time of our 
crystal is T * 0.1 s; thus, for any light beam 
across which the phase varies much faster 
than T, the nonlinear crystal responds only to 
the time-averaged (over times much larger 
than T) intensity structure. In our experimen- 
tal setup, we split a CW argon ion laser beam 

Fig. 1. The intensity struc- 
ture of a partially spatially 
incoherent beam at the 
output plane of the nonlin- 
ear crystal. The sample is 
illuminated homogeneous- 
ly with partially spatially 
incoherent light with I, = 
17.5 pm. The displayed 
area is 1.0 mm by 1.0 mm 
(A through D) and 0.8 
mm by 0.8 mm (E and F), 
respectively. The size of 
the nonlinear refractive 
index change of the crys- 
tal is successively in- 
creased from (A) An, = 0 
(the linear case), to (B) 
3.5 x 10-4, (c) 4.0 x 

(D) 4.5 x 10-4 (E) 
9 x lop4, and (F) 1 x 

The plots (0 
through D) show the cas- 
es just below threshold 
(no features), at threshold 
(partial features), and just 
above threshold (features 
throughout) for 1D inco- 
herent MI that leads to 
1D filaments. Far above 
this threshold, at a much 
higher value of the non- 
linearity, the I D  filaments 
become unstable (E) and 
become ordered in a reg- 
ular 2D pattern (F). 

(of A = 514.5-nm wavelength) into two 
beams using a polarizing beam splitter. Each 
beam is sent through a rotating diffuser, 
which introduces a random phase varying 
much faster than T, acting as a source of 
partially spatially incoherent light. Following 
the rotating diffusers the beams are expand- 
ed, collimated and made uniform, and recom- 
bined using another polarizing beam splitter. 
Lastly, both beams are launched into the crys- 
tal, in which they co-propagate. When an 
external (bias) direct current field is applied 
to the crystal, the extraordinarily polarized 

.beam experiences a large index change and, 
thus, serves as the "signal beam," whereas the 
ordinarily polarized beam experiences only a 
tiny index change and, therefore, serves as a 
background beam [its only role is to tune the 
degree of saturation of the nonlinearity (22)l. 
A lens and a polarizer are used to capture the 
image of the signal beam intensity at the 
output face of the sample in a charge-coupled 
device (CCD) camera. We control the degree 
of coherence of the signal beam by adjusting 
the diameter of the laser beam incident on the 
~ptating diffuser: the larger the beam diame- 
ter, the higher the incoherence and the shorter 
the correlation distance 1,. The background 
beam is made highly incoherent, which guar- 
antees that it never forms any patterns. We 
estimate the correlation distance I, at the 
input face of the crystal (when the system is 

linear, that is, when the applied field is 
zero) as the average value of the full width 
at half maximum (FWHM) of the speckle 
size on the CCD camera when the diffuser 
is momentarily stopped. 

Upon application of a sufficiently large 
bias field to the crystal, the signal beam 
experiences MI and forms patterns (Fig. 1). 
When the input signal beam is uniform, the 
underlying nonlinearity is of the form 

where I(r) is the local intensity as a function 
of coordinate r, I,, is the intensity of the 
incident background beam, and I, is the in- 
tensity of the signal beam at the input face. 
The term [l + (IdImJ] comes from the fact 
that the total current flowing through the 
crystal is almost the same as the photocurrent 
generated by both beams [in contradistinction 
with the case of bright screening solitons, 
where the soliton beam is very narrow com- 
pared to the crystal width and therefore does 
not affect the photocurrent and this factor is 
equal to unity (20)l. In Eq. 1, An, = 0.5n,3r3, 
(Vh)  is the electro-optic refractive index 
change, n, is the extraordinary refractive in- 
dex, r,, is the electrooptic tensor element, 
and (V/L) is the externally applied electric 
field. 

Incoherent MI is observed for a nonlinear- 
ity 6n exceeding a certain threshold. When an 
external voltage is applied to the nonlinear 
crystal with a magnitude large enough to 
allow for MI, the homogeneous light distri- 
bution at the output face of the sample be- 
comes periodically modulated and starts to 
form one-dimensional (ID) filaments of in- 
coherent light. In our experiments, the pre- 
ferred direction of the stripes is perpendicular 
to the c-axis of the crystal. We believe that 
this is due to the existence of striations in our 
sample, which act as "initial noise" that is 
eventually amplified by MI. These are index 
inhomogeneities in planes perpendicular to 
the c-axis that originate from melt composi- 
tion changes during growth of the crystal. 
Another possible reason for the preferential 
1D directionality might have to do with the 
anisotropy of the photorefractive nonlinear- 
ity. However, the final orientation of the 
stripes is rather random, with the largest ob- 
served angle of inclination of the stripes rel- 
ative to the c-axis being roughly 45". Typical 
examples of MI of partially spatially incoher- 
ent light are shown in Fig. 1, which displays 
the intensity of the signal beam at the output 
plane of the crystal. The correlation distance 
of the incoherent light is I,= 17.5 pm and the 
intensity ratio IdIat = 1. Figure 1A shows 
the output intensity without nonlinearity (VI 
L = 0). The cases of Fig. 1, B through D, 
correspond to a value of the nonlinearity just 
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below the threshold for 1D incoherent MI, at 
threshold, and just above the threshold. This 
shows (i) the existence of incoherent MI, and 
(ii) that incoherent MI occurs only when the 
nonlinear index change exceeds a well-de- 
fined threshold. In particular, Fig. 1C shows a 
mixed state exactly at threshold, in which 
order and disorder coexist. This is an indica- 
tion that the nonlinear interaction undergoes 
an order-disorder phase transition, in agree- 
ment with the theoretical predictions (8). But 
the experiment, as often, happens, revealed 
surprises. When the nonlinearity is further 
increased, a second threshold is reached: the 
filaments become unstable (Fig. 1E) and start 
to break into an ordered array of spots [two- 
dimensional (2D) filaments] as shown in Fig. 
1F. In all the images in Fig. 1, the correlation 
distance is much shorter than the distance 
between two adjacent stripes or filaments. 
This is a clear demonstration that pattern can 
form in weakly correlated nonlinear multipar- 
ticle systems. 

I I I I I I I I I I I I  - - 
- 

- - iv) .............................................................. 

1- ............................................................... iii) 1 
1- .............................................................. ii) 1 
- - 
- .............................................................. 0 -  

Next, we studied the dependence of the 
MI threshold on the coherence properties of 
the beam. For a constant intensity ratio Z,,/Zsat, 
the threshold where MI occurs depends on 
the incoherence of the light and on An, 
(which we control through the applied volt- 
age V). To identify the MI threshold exper- 
imentally, one needs to examine the growth 
dynamics of perturbations and observe 
whether they grow or decay. This is difficult 
to measure, especially because the initial per- 
turbations originate from random noise. In- 
stead, we investigated the visibility (modula- 
tion depth) of the pattern observed at the 
output face of the crystal: random fluctua- 
tions that do not increase have a tiny (less 
than 5%) visibility, whereas the perturbations 
that grow emerge at high visibility (>50%) 
stripes. We have conducted numerous exper- 
iments with various degrees of coherence of 
the input beam, and measured the modulation 
depth of the output stripes as a function of the 
applied field (translated to An,). The results 
are displayed in Fig. 2A, showing the modu- 
lation depth m = (I,, - I,,J/(I,, + I,,) 
of the light at the output plane, as a function 
of An, for different correlation distances I, 
and Io/Isat = 1. For a fully coherent input 
beam, rn becomes large even at a vanishingly 
small nonlinearity because coherent MI has 
no threshold. When the correlation distance is 
reduced, however, a well-defined threshold is 
observed. The jump from very low visibility 
to a large visibility is always abrupt, because 
for every beam with a finite I ,  there is always 
a threshold for MI. Clearly, the MI threshold 
shifts towards higher value of An, with de- 
creasing correlation distance I,. 

Once the nonlinearity exceeds the MI 
threshold, the transverse frequencies that ex- 
hibit gain grow exponentially and form peri- 
odic patterns (Fig. l). This growth leads to a 
large modulation depth (high visibility) in the 
output patterns and, equally important, to a 
considerable deviation of these stripes from a 
pure sinusoidal shape. That is, the propaga- 
tion dynamics become highly nonlinear. Part 

of this dynamics was captured in the last 
figure in (a), by the appearance of the second 
spatial harmonic. Yet the experiment pro- 
vides considerably more insight into the non- 
linear dynamic evolution of the patterns, as 
displayed by the intensity cross sections of 
the stripes at the output plane in Fig. 2B. In 
this particular set of data, I ,  = 17.5 pm and 
An, values 2.75 X (i), 4.0 X lop4 (ii), 
5.0 X lop4 (iii), and 8.0 X lop4 (iv). At the 
lowest An, value, MI is barely above thresh- 
old (i). For the higher value at (ii), the mod- 
ulation depth is higher yet the stripes have a 
sinusoidal shape. At the high value of (iii), 
the shape of the stripes is no longer sinusoi- 
dal, and several higher harmonics participate. 
For an even higher nonlinearity, the spectrum 
becomes irregular (iv), and 2D break up into 
filaments starts to occur. 

The periodicity (or the spatial frequency) 
of the 1D filaments that emerge in the MI 
process depends on the coherence properties 
of the beam and on the magnitude of the 
nonlinearity (8). In all of our experiments, for 
any given intensity ratio, indeed the spatial 
frequency monotonically increases with in- 
creasing correlation distance and with in- 
creasing An,. 

Up to this point, the nonlinearity in our 
experiments had the form given in Eq. 1, 
which is not saturable. On the basis of the 1D 
incoherent MI theory (a), we expect that sat- 
uration of the optical nonlinearity should ar- 
rest the MI growth rate. To investigate satu- 
ration effects, we modified the nature of our 
photorefractive screening nonlinearity by 
launching a "flat top" beam that is narrower 
than the distance between the electrodes in 
our crystal, yet is wide enough to serve as a 
"quasi-uniform beam" at its flat top. Because 
the beam is finite, it does not contribute to the 
total current flowing through the crystal at 
steady state. Hence, the nonlinearity is now 
8n = An, [Z(r)/(Z(r) + ZsaJ], which is the 
more commonly used form of the photore- 
fractive screening nonlinearity (20,21), and it 
has a saturable nature. When we launch such 

0 0.1 0.2 0.3 0.4 0.5 
x (mm) 

Fig. 2. Threshold dependence of incoherent MI. 
Modulation [m = (I,,, - lmi,,)l(lma, + lmi,)] of 
the light pattern versus size of the nonlinearity 
An, for different correlation distances I, and an 
intensity ratio 1dIsat = 1. (A) Measured values 
of m for I, = 8, 10, and 17.5 p,m and for 
coherent light (I, -+ m). The dotted curves are 
guides for the eye. (B) Intensity cross sections 
of the stripes for I, = 17.5 p,m and a nonlinear 
refractive index change of An, = 2.75 X 
(i), 4.0 X lop4 (ii), 5.0 X lop4 (iii), and 8.0 X 
lop4 (iv). The dotted lines indicate the base ' 
line of the respective profile. The stripes Fig. 3. Suppression of incoherent MI due to saturation of the nonlinearity. The intensity structure 
emerge as sinusoidal stripes (for nonlinearity of a finite signal beam [Gaussian beam with a width (FWHM) of 1 mm] at the output plane of the 
just above threshold), become square-wave crystal. The intensity ratio (peak of beam to backgroundlsaturation intensity) is ldlsat = 3. Without 
stripes at a higher nonlinearity, and eventually nonlinearity (An, = O), the output beam shows no features. The photograph is taken at An, = 6 X 
break up into filaments at a large enough non- The saturable nature of the nonlinearity clearly suppresses MI in the center of the beam, 
linearity. a.u., arbitrary units. whereas strong modulation and filaments of random orientation occur in the margins of the beam. 
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a beam in a biased crystal with Aw0 = 6 X 
10 - 4 and with a ratio between the peak in­
tensity and the saturation intensity, /(0)//sat = 
3, patterns form in several regions on the 
beam (Fig. 3). At the flat top of the beam, low 
visibility stripes appear. In this region, the 
nonlinearity is above threshold but in rather 
deep saturation, so the MI growth rate is 
suppressed. Then, at the margins of the beam, 
where the local ratio I(v) + Isat is around and 
slightly below unity, high-visibility stripes 
appear. In this region, the nonlinearity is 
above threshold and is not saturated, so the 
MI growth rate is large. Lastly, at the far 
margins of the beam, the local nonlinearity is 
below threshold, because I(r) <SC /sat. A by­
product of this particular experiment is the 
clear evidence (Fig. 3) that the ID stripes 
emerge at different orientations and are not 
affected much by the local noise (striations). 

We would also like to relate our nonlinear 
optical system to other nonlinear systems of 
weakly correlated particles. Our prediction and 
experimental observation implies that in such 
systems patterns will form spontaneously, pro­
vided the nonlinearity is larger than a threshold 
value, which in turn is set by the correlation 
distance. For example, we expect that ID and 
2D patterns will form in an atomic gas at tem­
peratures slightly above the Bose-Einstein con­
densation temperature (at which the atoms pos­
sess independent degrees of freedom, yet are 
still weakly correlated). At least for atoms with 
attractive collision forces, whether natural [e.g., 
7Li (23)] or through magnetic tuning of the 
condensate self-interaction (24), such patterns 
should form. The equation governing the evo­
lution of the "mean field" of an atomic gas is 
the Gross-Pitaevski equation (25% which al­
most fully coincides with the nonlinear wave 
equation that gives rise to (1 + 1)D Kerr soli-
tons. The relevance of this work to cooled 
atomic gases is therefore obvious. In other areas 
of physics there are, in fact, at least some hints 
that such patterns do exist in disordered many-
body nonlinear systems. To be specific, several 
experimental papers have reported a large an-
isotropy in the resistivity of a 2D electron sys­
tem with weak disorder (26). The observed 
anisotropy is now attributed to the combination 
of nonlinear transport and weak disorder (27, 
28), which is the transport equivalent of non-
linearity and incoherence in optical systems 
such as ours. The theoretical works predict the 
existence of ID stripes (electron stripes) of 
charge density wave. Spontaneous formation of 
stripes was also predicted and observed in high­
ly (superconducting transition temperature) su­
perconductors (29), which is again a nonlinear 
weakly correlated many-body system. Lastly, 
as discussed in (8), spontaneously forming pat­
terns are known in at least one system of clas­
sical particles: a gravitational system. The spon­
taneous emergence of patterns in all of these 
diverse fields of science indicates that pattern 

formation in nonlinear weakly correlated sys­
tems is a universal property. It is a gift of nature 
that in optics we can study directly, visualizing 
every little detail of the physics involved and 
isolating the underlying effects. 
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Experimental Verification of 
Decoherence-Free Subspaces 

Paul G. Kwiat,1* Andrew J. Berglund,11 Joseph B. Altepeter,1 

Andrew C. White 1 2 

Using spontaneous parametric down-conversion, we produce polarization-en­
tangled states of two photons and characterize them using two-photon to­
mography to measure the density matrix. A controllable decoherence is im­
posed on the states by passing the photons through thick, adjustable birefrin-
gent elements. When the system is subject to collective decoherence, one 
particular entangled state is seen to be decoherence-free, as predicted by 
theory. Such decoherence-free systems may have an important role for the 
future of quantum computation and information processing. 

Quantum computation holds the promise of 
greatly enhanced speeds for solving certain 
problems, including factoring (7), simulation 
of quantum systems (2, 3), and database 
searching (4, 5). One main obstacle to quan­
tum computation is the problem of decoher­
ence—fragile quantum superpositions are de­
stroyed by unwanted coupling to the environ-
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ment. In particular, it is the entangling of the 
quantum system to unobserved degrees of 
freedom that leads to a loss of coherence. (A 
related problem is that of dissipation, where­
by energy is lost from the system.) Three 
basic strategies to cope with decoherence in 
quantum computation have emerged. The 
first, quantum error correcting codes, relies 
on trying to detect errors using ancillary 
quantum bits (qubits) and actively manipulat­
ing the interactions to correct these errors (6, 
7). The second strategy employs dynamical 
decoupling, in which rapid switching is used 
to average out the effects of a relatively slow­
ly decohering environment (8). The final ap­
proach attempts to embed the logical qubits 
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