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To date. more than 540,000 vrotein sequences 

The Babel of Bioinformatics 
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T he sequencing of entire genomes is a 
major achievement, but the meaning of 
the mass of accumulated data is only 

just beginning to be unraveled. At first sight, 
the task appears straightforward: locate the 
genes and translate the coding regions to es- 
tablish their protein products; perform simi- 
larity searches to establish relationships with 
previously characterized sequences and as- 
sign function by evolutionary inference; and 
rationalize the function in structml terms us- 
ing known or model-derived structures. Giv- 
en the quantity of data, the procedures should 
be automated as much as possible. 

The reality, of course, is not so simple. At- 
tempts to decipher the clues latent in genom- 
ic data are hampered because current meth- 
ods to predict genes in uncharacterized DNA 
are unreliable (and it is not always clear what 
we mean by "gene"); it is presumptuous to 
make functional assignments merely on the 
basis of some degree of similarity between 
sequences (and it is not always clear what we 
mean by "function"); very few structures are 
known compared with the number of se- 
auences. and structure mediction methods 

ranging from 27,462 to 3 12,278. The meth- 
ods used to arrive at these numbers each 
involve different approximations and ex- 
trapolations. Nevertheless, it is disturbing 
that the different analytical approaches 
should yield such disparate results. 

What is a gene? 
Perhaps the biggest obstacle to accurate 
gene counting is that even the definition of 
a gene is unclear. Is it a heritable unit cor- 
responding to an observable phenotype? 
Or is it a packet of genetic information 
that encodes a protein, or proteins? Or per- 
haps one that encodes RNA? Must it be 
translated? Are genes genes if they are not 
expressed? As definitions vary, inevitably 
so do estimates of the total number of 
genes in sequenced genomes. 
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have bken deposited i n  the nonredkdant 
database maintained by the National Center 
for Biotechnology 1nf;rmation (NCBI), and 
millions of expressed sequence tags (ESTs), 
which are partial sequences of clones that are 
often error prone, are housed in public and 
proprietary repositories. These numbers will 
snowball with the fruition of farther genome 
projects. By contrast, the number of unique 
protein structures is still less than 2000. Of 
course, we do not know how many unique se- 
quences there are; nevertheless, it is clear that 
there is a dearth of structural information 

Given this sequence-structure imbalance, 
it is imperative that we focus on deciphering 
the structural, functional, and evolutionary 
clues encoded in the language of biological 
sequences. Two distinct analytical approach- 
es have emerged. Pattern recognition meth- 
ods aim to detect similarity between se- 
quences and structures and infer related 
functions. Thus, they require some charac- 
teristic to have been observed and deposited 
in a reference database. In contrast, ab initio 
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automation k i t  has been usid of necessity, 
Structure, with its imperfect tools and protocols, has led ,- 

to the accumulation of much database misin- lrnple all 
formation; and the terminology has been im- n bundle 
precise, muddying perceptions of what can 
realistically be achieved. Given these prob- 
lems, what is the state of the art in sequence- 
structure-function bioinfonnatics? 

Gene prediction 
Information used to predict genes includes ; ? signals in the sequence, content statistics, 
and similarity to known genes. In a recent 
test of gene detection tools on part of the 
Drosophila genome, the majority of these 
"gene finders" identified 95% of coding 
nucleotides, but intronlexon structures 
were correctly predicted for only about 
40% of genes. The different methods failed 
to find between 5% and 95% of genes, and 
incorrectly identified up to 55% (1). But 
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probably the most sobering evidence of the - 
of gene prediction methods is the Levels of complexity. Looking at a sequence (A) or a fold (0) in isolation, we can say little about 

in the number of genes in the its function. Only when we look at sequences or structures together do the patterns of conserva- 
human genome, with current estimates tion that emerge (motifs) begin to provide functional clues. For example, the above motifs (C) may 

suggest rales in calcium binding, nucleotide binding, and membrane anchoring. We can think of 
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prediction methods deduce structure directly 
from sequence. The approaches are quite 
different and should not be confused. Their 
levels of success also differ markedly. 

Function prediction through pattern 
recognition 
Tools for similarity searching are standard 
components of the sequence annotator's ar- 
mory. Sequence similarity programs may seek 
pairwise similarities in large sequence reposi- 
tories or search for conserved patterns in gene 
family databases (2-5). Gene family databas- 
es allow more specific functional diagnoses to 
be made than is possible by pairwise search- 
ing. They are based on the principle that relat- 
ed sequences can be aligned to find regions 
(motifs) that show little variation. These mo- 
tifs usually reflect some vital structural or 
functional role (see the figure), and they can 
be used to derive diagnostic family signatures. 
Sequences can then be searched against 
databases of such signatures to see whether 
they can be assigned to known families. Gene 
family databases have recently been integrat- 
ed to create a unified protein family resource 
(6),facilitating the inference of function by 
identifying homologous relationships. 

The term "homology," a fundamental con- 
cept in bioinformatics, is often used incor- 
rectly. Sequences are homologous if they are 
related by divergence from a common ances- 
tor (7).Conversely, analogy relates to the ac- 
quisition of common structural or functional 
features via convergent evolution from unre- 
lated ancestors. For example, P barrels occur 
in soluble serine proteases and integral mem- 
brane porins, but despite their common archi- 
tecture, they share no sequence or functional 
similarity. Similarly, the enzymes chy- 
motrypsin and subtilisin share groups of cat- 
alytic residues with almost identical spatial 
geometries, but they have no other sequence 
or structural similarities. Homology is not a 
measure of similarity, but rather an absolute 
statement that sequences have a divergent 
rather than a convergent relationship. This is 
not just a semantic issue because imprecise 
use of the term obscures evolutionary rela- 
tionships. In comparing structures, the same 
arguments apply. Structures may be similar, 
but common evolutionary origin remains a 
hypothesis until supported by other evidence; 
the hypothesis may be correct or mistaken, 
but the similarity is a fact (8). 

Among homologous sequences, we can 
distinguish orthologs (proteins that usually 
perform the same function in different 
species) and paralogs (proteins that perform 
different but related functions within one or- 
ganism). Orthologs allow investigation of 
cross-species relationships, whereas paralogs, 
which arise via gene duplication events, shed 
light on underlying evolutionary mechanisms 
because the duplicated genes follow separate 

evolutionary pathways and new specificities 
evolve through variation and adaptation. 
Such complexity presents real challenges for 
bioinformatics. When analyzing a database 
search, it may be unclear how much function- 
al annotation can be legitimately inherited by 
a query sequence, and whether the best 
match turned up by the search is the true or- 
tholog or a paralog. This difficulty is the 
source of numerous annotation errors. 

Further com~lications result from the 
domain andlor modular nature of many pro- 
teins. Modules are autonomous folding 
units that often function as protein building 
blocks, forming multiple combinations of 
the same module or mosaics of different 
modules. They can confer a variety of func- 
tions on the parent protein. If the best hit in 
a database search is a match to a single do- 
main or module. it is unlikelv that the func- 
tion annotation can be from the 
parent protein to the query sequence. 

In using modules to confer different 
functionalities, Nature uses old material to 
create new systems. The complexity of such 
systems poses important problems for com- 
putational approaches because the proper- 
ties of a system can be explained by but not 
deduced from those of its components (9, 
10). The presence of a module tells little of 
the fimction of the complete system; know- 
ing most components of a mosaic does not 
allow us easily to predict a missing one, and 
modules in different proteins do not always 
perform the same function. 

Many other factors also complicate 
function assignment: gene functions may 
be redundant, nonorthologous displace- 
ment can replace genes with unrelated but 
functionally analogous genes, horizontal 
gene transfer can introduce genes from 
different phylogenetic lineages, and lin- 
eage-specific gene loss can eliminate an- 
cestral genes. Thus, genomes harbor many 
obstacles to reliable function assignment. 

What is function? 
Protein function is context-dependent. Vague- 
ness in using the term has yielded confusing 
database annotations. It is currently used to 
refer variously to biochemical activities, bio- 
logical goals, and cellular structure; for exam- 
ple, the function of actin might be described 
as "ATPase" or "constituent of the cytoskele- 
ton." In an attempt to introduce rigor into the 
field and better reflect biological reality, inde- 
pendent ontologies such as the Gene Ontolo- 
gy (1 1) are under development that aim to de- 
fine more explicitly the relationships between 
gene products and biological processes, 
molecular functions, and cellular components. 

Structure prediction and fold recognition 
We have seen that definitions of "genes" 
differ, making it difficult to count genes 

accurately, and that our concepts of "func- 
tion" differ, making function assignment 
tricky. It would seem, however, that we can 
agree on what structures are. They are tan- 
gible, measurable things, so should we not 
be able to predict them reliably? 

Structure prediction methods range 
from computationally intensive strategies 
that simulate the physical and chemical 
forces involved in protein folding to 
knowledge-based approaches that use in- 
formation from structure databases to 
build models. Yet the problem of predict- 
ing protein structure remains unsolved: 
knowledge-based techniques typically pro- 
duce low-resolution models, and no cur- 
rent method yields reliable predictions for 
remote homologs (12). For small proteins, 
ab initio methods generate models with 
substantial segments that resemble the cor- 
rect fold, but results deteriorate beyond 
-1 00 residues. Today, knowledge-based 
methods, especially those that combine in- 
formation from different approaches, give 
best results (13). The most successful 
modeling and fold recognition studies have 
balanced better algorithms with appropri- 
ate levels of manual intervention (14). 

Prediction methods do not work well 
because we do not fully understand how 
the primary structure of a protein deter- 
mines its tertiary structure. Structural ge- 
nomics projects will gradually lessen our 
reliance on prediction, because they aim to 
provide experimental structures or models 
for every protein in all completed genomes 
(although membrane protein structures 
will be difficult to obtain because they are 
difficult to crystallize). We must keep in 
mind, however, that structure alone will 
not inherently tell us function (see the fig- 
ure). For example, determining the struc- 
ture of a hypothetical protein and discover- 
ing that it binds ATP (15) may shed light 
on possible aspects of its functionality, but 
such information does not reveal its spe- 
cific biological function. 

What is structure? 
In the context of fold recognition and pre- 
diction, it is important to be precise about 
what we meanby "structure." For exam- 
ple, is a prediction a "good" prediction if 
it correctly reproduces all atomic posi- 
tions, the topology (connectivity of sec- 
ondary structures), the architecture (gross 
arrangement of secondary structures), or 
merely the structural class (mainly a,  
mainly P, etc.)? Where does a "reasonably 
good" prediction fall in this hierarchy. and 
what level of structural detail does a 
"tough near miss" (I6)reveal? Using such 
imprecise words hinders comprehension, 
making it difficult to evaluate what a good 
prediction really is. 
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Outlook 
In "predicting" genes, protein functions, 
and structures, it is helpful to define our 
terms precisely and be honest about our 
achievements. Otherwise, we will continue 
to be baffled by paradoxical new prediction 
methods that yield 3 0 %  error rates. Gene 
identification, structure prediction, and 
functional inference are nontrivial compu- 
tational tasks, but with the relentless accu- 
mulation of sequence data, improvements 
continue to be made in all areas. 

Nature functions by integration, and the 
adoption of a more holistic view of complex 
biological systems is an essential next step 
for bioinformatics. To get the most from ge- 
nornic data, we need to take account of in- 
formation on the regulation of gene expres- 
sion, metabolic pathways, and signaling cas- 
cades. Proteins do not work in isolation but 
are involved in interrelated networks. Un- 
raveling these networks and their interac- 
tions will be vital to our understanding of 
normal and pathologic cell development, 
and will help us create an integrated map- 
ping between genotype and phenotype. 

Genomics-based drug discovery is 
heavily dependent on accurate functional 
annotation. Toward this end, bioinformatics 
will need to deliver highly integrated, inter- 
operable databases (and data "warehous- 
es") that allow the user to reason over dis- 
parate data sources and ultimately enable 
knowledge-based inference and innovation. 
The more genome annotation is automated, 
the greater will be the need for collabora- 
tion between software developers, annota- 
tors, and experimentalists. And the more 
data we have to handle, the more rigorous 
we must be in our thinking (and writing) if 
we are to make sense of the complexities. 
Sequence-structure-function bioinformat- 
ics does not yet yield all the answers, but a 
future holistic approach should help fuse 
today's glimmerings of knowledge into a 
new dawn of understanding. 
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SOFTWARE 

Conquering by 

Dividing 


The average personal computer 
spends much less than half a day 
actually performing useful compu- 

tations. Many users, concerned about the 
vulnerability of expens 
components to the cons 
cycling of the power on 
off, leave their systems on 
continuously. It is staggering 
to imagine the enormous, un- 
used computing resources o 
several million PCs left run 
ning unattended. One popular 
approach to tapping this com- 
puting power is the Search for Extra-Ter- 
restrial Intelligence (SETI) project (I), 
which breaks giant computing problems 
into pieces that can be solved on personal 
computers in their spare time. 

Popular Power, Inc. is a company of- 
fering a new twist on this theme. Like 
SETI, a company computer feeds pieces 
of large computing problems to net- 
worked personal computers via their soft- 
ware program, Popular Power Worker, for 
idle-time oueration. Pouular Power's au-
proach differs, however, in providing a 
variety of computing problems to work 
on. These include nonprofit projects with 
no financial incentiGe to ihe-personal 
computer owner, as well as commercial 
jobs that will eventually pay users for 
tasks performed on their machines. 

The current version of the Popular Pow- 
er Worker runs only on Windows and Lin- 
ux systems and is officially in pre-release 
form. The preliminary status of the soft- 
ware is readily apparent; numerous bugs, 
freauent crashes. and difficulties in instal- 
lation plague the program currently. If in- 
formation at the company Web site is accu- 
rate, personal computer owners interested 
in Popular Power's computing model may 
find dealing with the problems of the early 
release worth their while. Users of the pre- 
release software are promised priority of 
access to commercial computing jobs after 
the official version is released. Popular 
Power Worker can be downloaded for free 
from the company's Web site, and it installs 
as a screen saver, which starts the program 
running when it becomes active. Future 
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versions of the program for Macintosh and 
Solaris systems are planned. 

The benefits of the Popular Power 
scheme for distributed computing tasks do 
not accrue solely to the user whose com- 
puter is used. The flexible nature of POPU-

lar Power's design provides access for 
businesses, scientists, and anyone with 
massive computing projects to computing 
power that is potentially far greater than 
they would gain from a fixed piece of 

a1 computer users might 
be able to select which com- 
mercial job to run through 
Popular Power Worker de- 

ng on the return offered 
e originating contractor. 

key to the success of the 
computing model is likely to 
be the price Popular Power de- 
mands for acting as the inter- 

face between the computing project cre- 
ators and the personal computer users. 

In summary, the current version of 
Popular Power Worker is still in the testing 
phase and users may find the software un- 
stable. Tech-savvy personal computer en- 
thusiasts are best suited to test the current 
pre-release product. The remaining users 
are advised to wait at least for the official 
release of the software. 

-KEVIN AHERN 
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SOFTWARE 

Eyes on the Skies 

The orbital space above Earth con- 
tains an astonishing collection of 
man-made satellites. Tracking all of 

these objects is no small task. Liftoff is a 
NASA Web site that provides several soft- 
ware tools to locate, track, and identify 
E a r t h - o r b i t i n g  
satellites. At the 
Web site, three pro- 
grams are available: 
J-Pass (identifies 
satellites passing 
overhead); J-Track 
(allows one to track 
orbiting objects); 
and J-Track 3D (al-
lows one to view satellites orbiting Earth u 


from a perspective far away in space). 
Each of these platform-independent appli- 
cations is written in Java and is accessible 
from both Internet Explorer and Netscape 
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