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A Bacterial Toxin That Controls
Cell Cycle Progression as a
Deoxyribonuclease I-Like Protein

Maria Lara-Tejero and Jorge E. Galan*

Many bacterial pathogens encode a multisubunit toxin, termed cytolethal
distending toxin (CDT), that induces cell cycle arrest, cytoplasm distention, and,
eventually, chromatin fragmentation and cell death. In one such pathogen,
Campylobacter jejuni, one of the subunits of this toxin, CdtB, was shown to
exhibit features of type | deoxyribonucleases. Transient expression of this
subunit in cultured cells caused marked chromatin disruption. Microinjection of
low amounts of CdtB induced cytoplasmic distention and cell cycle arrest. CdtB
mutants with substitutions in residues equivalent to those required for catalysis
or magnesium binding in type | deoxyribonucleases did not cause chromatin
disruption. CDT holotoxin containing these mutant forms of CdtB did not induce
morphological changes or cell cycle arrest.

Campylobacter jejuni, the most common
cause of food-borne infectious illnesses in the
United States (/), encodes a toxin termed
CDT, which is considered to be an important
virulence factor (2-4). This toxin causes eu-
karyotic cells to arrest in the G,/M transition
phase of the cell cycle (5). Intoxicated cells
show a characteristic accumulation of the
phosphorylated form of the cell cycle regula-
tor CDC2, as well as an increase in their
DNA content (4N), consistent with a cell
cycle blockage at the G,/M boundary (6—10).
After intoxication, cell division stops, but the
cytoplasm continues to grow and distend,
resulting in cells up to five times their normal
size. Intoxicated cells maintain viability for
extended periods of time, although they even-
tually show morphological changes in the
chromatin such as condensation and/or frag-
mentation and ultimately die. In addition to
C. jejuni, CDT-homologous toxins have been
described in several other important bacterial
pathogens (/1-17), but little is known about
their mechanism of action. CDTs are encoded
by a cluster of three highly conserved genes
of unknown function, cdtd, cdtB, and cdtC
).

To investigate which of the Cdt subunits
may have toxic activity within the host cell,
we transfected COS-1 cells with plasmids
expressing epitope-tagged CdtA, CdtB, or
CdtC or vector control (/8). Cells expressing
CdtA or CdtC or transfected with the vector
control displayed an apparently normal mor-
phology and showed no signs of intoxication
(Fig. 1). In contrast, cells transfected with a
plasmid expressing CdtB exhibited striking
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alterations characterized by fragmented nu-
clei and often a total collapse of the chroma-
tin (Fig. 1). Changes in the chromatin were
apparent as early as 18 to 24 hours after
transfection when nuclei of transfected cells
began to exhibit a distinct smooth appearance
(Fig. 1). Forty-eight hours after transfection,
the nuclei of transfected cells appeared seri-
ously compromised, exhibiting marked frag-
mentation or outright disappearance of the
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chromatin (Fig. 1). Thus, CdtB was respon-
sible, at least in part, for the activity of the
CDT toxin within the host cell.

We examined the predicted amino acid
sequence of this toxin subunit in an effort to
identify clues about its function. Amino acid
sequence comparison revealed similarity to
deoxyribonuclease (DNase) I-like proteins.
Further alignment of CdtB with members of
the DNase I protein family revealed a striking
conservation of most residues that mutagen-
esis and structural analysis have shown to be
essential for enzymatic activity (19-21) (Fig.
2A). These include residues that are part of
the active site as well as residues that are
important for Mg?* binding, an essential re-
quirement for the catalytic activity of this
family of proteins (27). Further sequence
comparison revealed that these residues are
absolutely conserved in all CdtB proteins
from other bacterial pathogens.

To confirm the putative DNase activity of
CdtB, we constructed mutant derivatives of
this toxin subunit carrying single amino acid
substitutions in residues that have been
shown to be critical for the catalytic activity
of members of the type I DNase family of
proteins (22). The residues that were mutated
were equivalent to those shown in other type
I DNases to be either components of the
active site (i.e., His'>?) or essential for mag-
nesium binding (i.e., Asp'®) (19-21) (Fig.

Fig. 1. Effect of the transient
expression of CDT toxin compo-
nents in cultured cells. COS-1
cells were transfected with vec-
tors coding for M45 epitope-
tagged C. jejuni CdtA, CdtB, or
CdtC toxin subunits. Twenty-
four or 48 hours after transfec-
tion, cells were stained with a
monoclonal antibody directed to
the M45 epitope tag to visualize
cells expressing the individual
toxin subunits and with DAPI to
visualize the chromatin (78). Im-
ages were obtained with a Nikon
Diaphot inverted fluorescence
microscope fitted with a Prince-
ton Instruments Micromax digi-
tal camera. Scale bar, 50 pum.
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2A). Plasmids encoding either epitope-tagged
CdtBH!52Q or CdtBP'#5S were transfected
into COS-1 cells, and 48 hours after transfec-
tion, the cells were stained with an antibody
directed to the epitope tag and with 4',6'-
diamidino-2-phenylindole (DAPI) to exam-
ine the structure of the chromatin. Cells trans-
fected with either of these plasmids exhibited
completely normal nuclear morphology de-
spite the presence of high levels of mutant
CdtB protein as judged by the bright fluores-
cence staining and Western blot analysis
(Fig. 2B). This was in sharp contrast to cells
transfected with wild-type CdtB, which
showed a complete collapse of their chroma-
tin (Fig. 2B). The mutant CdtB proteins ex-
hibited exclusive nuclear localization, impli-
cating the nucleus as the site of action for this
toxin subunit and consistent with its potential
role as a DNase (Fig. 2B). Because CdtB
does not exhibit a detectable consensus nu-
clear localization signal (NLS), its mecha-
nism of translocation to"the nucleus may
involve either an atypical NLS or a carrier
protein (23).

To confirm the toxic activity of CdtB, we
purified this protein to homogeneity and mi-
croinjected it into cells (24) (Fig. 3B). Mi-
croinjection into COS-1 or REF52 cells of a 1
mg/ml solution of purified CdtB resulted in
marked changes in the chromatin as early as
4 hours after microinjection (Fig. 3A). In
contrast, microinjection of equal amounts of
CdtBH152Q purified in identical fashion did
not cause any visible alteration to the chro-
matin of microinjected cells (Fig. 3A). Both
wild-type CdtB and CdtB"'%2Q were exclu-
sively localized to the nucleus (Fig. 3A).

The morphological changes induced by
the overexpression of CdtB or the microin-
jection of a 1 mg/ml solution of purified CdtB
do not completely resemble those changes
induced by CDT holotoxin intoxication. We
hypothesized that this difference could be the
result of the vastly different intracellular lev-
els of CdtB under these two different condi-
tions. To test this hypothesis, we microin-
jected into COS-1 and REFS2 cells increas-
ingly lower amounts of purified CdtB protein
and examined the effects on cellular and nu-
clear morphology (25). Microinjection of a
solution containing purified CdtB (1 pg/ml)
resulted in vast distention of the cell cyto-
plasm and severe enlargement of the nucleus
4 to 5 days after microinjection (Fig. 3B).
These changes closely resemble those in-
duced by the CDT holotoxin, indicating that,
when microinjected into cells, CdtB by itself
was capable of recapitulating the toxic effects
observed by CDT holotoxin treatment. As
expected, microinjection of similar amounts
of CdtB"'52Q did not result in any detectable
cellular changes (25).

To investigate the importance of the
DNase activity of CdtB on the toxicity of the

www.sciencemag.org SCIENCE VOL 290

REPORTS

CDT holotoxin, we constructed plasmids that
encode the mutant proteins CdtBH!52Q or
CdtBP!#S along with CdtA and CdtC in the
same genetic organization as that of the wild-
type locus (26). Extracts from Escherichia
coli strains carrying these plasmids or the
wild-type cdtABC locus were prepared, and
their toxicity was examined by a variety of
assays (27). The levels of the CdtB mutant
proteins as well as those of the other compo-
nents of the holotoxin were equivalent in all
the extracts used in these studies (Fig. 4C).
Extracts from E. coli expressing wild-type
CdtB induced marked morphological changes
in intoxicated cells characterized by a marked
distention and enlargement of the cell cyto-
plasm and nucleus (Fig. 4A). In contrast,
cells treated with extracts from E. coli ex-
pressing the catalytic (CdtBH!%2Q) or the

Mg?*-binding (CdtBP'#5S) mutants exhibit-
ed the same morphology as cells treated with
extracts from E. coli carrying the vector alone
(Fig. 4A). To examine the effect of the mu-
tant toxins on cell cycle progression, we an-
alyzed by flow cytometry the DNA content of
cells treated with the same extracts of E. coli
expressing wild-type or mutant forms of
CdtB. Consistent with a G,/M block, cells
intoxicated with extracts from bacteria ex-
pressing wild-type holotoxin exhibited a 4N
DNA content (Fig. 4B). In contrast, the flow
cytometric profiles of cells infected with ex-
tracts from bacteria expressing either of the
mutant forms of CdtB (CdtBH'52Q or
CdtBP'85S) were indistinguishable from the
profile of untreated cells or cells treated with
extracts from bacteria carrying the empty
vector (Fig. 4B). Thus, CdtB DNase activity

A

1 DHP-1 —---MGGPRALLAALWALEAAG TAA LRI GAFN IQ- SFGDSKVSD PACGSI IAK ILAGYDLALV! RDPDLSAVSALMEQIN-- SVSEHE 83
2 DNase I ---MRGMKLLGALLALAALLQGAVSLKIAAFNIQ-TFGETKMSNATLVSY IVQILSRYDIALV RDSHLTAVGKLLDNLN--QDAPDT 84
3 DHP-2  -----] MSRELAPLLLLLLS THSALAMRI CSFNVR- SFG ESKQEDKNAMDV IVKVIKRCDI ILV: KDSNNR ICPILMEKLNRNSRRGIT 84
4 DHP-3 MSLH PAS PRLASL LLF ILA LHD TLA LRLCSFN VR~ SFGASKKENHEAMDI IVK ITKRCDL ILL; KDS SNN ICPMLMEKLNGNSRRSTT 89
5 DNase-X ------- MHY PTALLF LILANGAQA FRI CAFNAQ- RLT LAK VAR EQVMDT LVR ILARCDI MVL: VDSSGSAIPLLLRELN-RFDGSGP 81
6 CdtB --——-] MKKIICLF LSFNLA FANLEN FNV GTWN LOG SSAATE SKW SVS VRQ LVS GAN PLDI LMI GTL PRTATPTGRHVQQ-- -GGTPI 82
1 DHP-1 YSFV SSQ PLGRDQ YKEMYL FVY RKDAVS VVDT YLY PD- - -~ -PE DVF SRE PFV VKF SAPG TGERAP PLP SRRALT PPPLPAAAQNLVL IP 168
2 DNase I YHYVVSEPLGRNS YKERYLFVYRPDQVSAVDSYYYDDGCEPCGNDTF NRE PAI VRF FSR- —-= === ==FT--EVR-== === === EFAIVP 154
3 DHP-2 YNYV ISSRLGRNT YKE QYA FLY KEK LVS VKRS YHY HDY QDG -DA DVF SRE PFV VWF QSP- — ---H------T----AVKDFVIIP 153
4 DHP-3 YNYV ISSRLGRNT YKE QYA FVY KEK LVS VKTK YHY HDY QDG -DT DVF SRE PFVVWF HSP- - -— --=-F------T----AVKDFVIVP 158
5 DNase-X YSTLSSPQLGRSTYMETYV YFYRSHKTQVLSS YVYND- --- ~EDDVF ARE PFVAQF SLPSN-- ---------------VLPSLVLVP 146
6 CdtB DEYEWN- -LG TLSRPDRVF IYY SRVDVGANRVNLA IVSRMQAEEVIVLPP PTTVSRPIIG -~~~ -----= --- ——- ——- --IRNGNDAFFN 150
1 DHP-1 PHQAVAEIDALY DVY LDV IDK WGT DDML FL{G D] SYVRAQDWAAIRLRS SEVF KWL IPDSADTTVGN- SDCAYPRIVACGARL 257
2 DNase I PGDAVAEIDALY DVY LDV QEKWGL EDVM DFNJAGC SYVRPS QWS SIR LWT SPTF QWL IPD SADTTA TP- THCAYPRIVVAGMLL 243
3 DHP-2 PET SVKEIDELV EVY TDV KHRWKA ENF I DFNJAGC SYV PKKAWK NIR LRT DPRF VWL IGDQED TTV KKS TNC AYPRIVLRGQEI 243
4 DHP-3 PET SVK EID ELV DVY TDV RSQWKT ENFI DFNJAGC SYV PKK AWQNIR LRT DPKF VWL IGD QED TTVKKS TSCAYPRIVLCGQEI 248
5 DNase-X PKAVEKELNALY DVF LEV SQHWQS KDVI DFNJADC ASL TKK RLD KLE LRT EPGF HWV IADGED TTV RAS THC TYPRVVLHGERC 236
6 CdtB ANGGTDVGA IIT AVDAHF ANM PQVN-WM IAG DFNJRDP STI TST VDR ELANRI RVVF P-- --- ---TSATQA SGG TLP[YAI TGNSNR 230
1 DHP-1 RRSLKPQ SAT VHD FQE EFG LDQ TQA LAIL SDHFPVEVTLKFHR-= === === === === === ——— ——— ——— 209

2 DNase I RGAVVPDSALPFNFQAAYGLSDQLAQAI SDHYPVEVMLK----- == --=---————-————-————— 282

3 DHP-2 'VSSVVPK SNSVFDFQK AYK LTE EEA LIV SDH FPVE FKL QSS RAF TNS KKS VTLRKK TKS KRS --- --— 305

4 DHP-3 VNSV VPR SSGVFDFQK AYD LSE EEA LD}V SDH FPVE FKL QSS RAF TNN RKS VSL KKRKKGNRS - - - -—— 310

5 DNase-X R--SLLHTAAAFDFPTSFQLTEEEALNI SDHYPVEVELKLSQAH SVQPLS LTVLLLLSLLSPQLCPAA 302

6 CdtB  ----- QQTYT PPLLAA ILMLAS LRSHIN SDHFPVNFRKF-- === === === === == ———————————— 265

Fig. 2. (A) Amino acid sequence

comparison of C. jejuni CdtB tox- B
in subunit with members of the
DNase-| family of related pro-
teins (33). Residues that have
been shown to be essential for
catalysis are boxed. Arrows indi-
cate the CdtB residues that were
mutated for these studies. The
alignment was done with the
ClustalW program (34). The
DHP-1, DHP-2, DHP-3, DNase |,
and DNase X sequences corre-
spond to human DNases. (B) Ef-
fect of the transient expression
of CdtB mutants in cultured
cells. COS-1 cells were trans-
fected with vectors coding for
different M45 epitope—tagged
CdtB mutants as indicated (78).
Forty-eight hours after transfec-
tion, cells were stained with a
monoclonal antibody directed to
the M45 epitope tag to visualize
cells expressing the different
CdtB proteins and with DAPI to
visualize the chromatin. Images
were obtained with a Nikon Dia-
phot inverted fluorescence mi-
croscope fitted with a Princeton

anti M45

DAPI

Instruments Micromax digital camera. Scale bar, 50 um.
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Fig. 3. Effect of the microinjection of purified CdtB or CdtB""522 in cultured cells. (A)
COS-1 or REF52 cells grown on gridded cover slips were microinjected with a 1
:’-_) Q  mg/ml solution of purified preparations of CdtB or CdtBH522 (24). Four hours after
o % microinjection, cells were fixed and stained with an antibody directed to CdtB and
O T  with DAPI to visualize the chromatin. In some experiments, microinjected cells were
%‘ identified by comicroinjection of FITC-labeled dextran (24). (B) COS-1 or REF52 cells
© grown on gridded cover slips were microinjected with a 1 pg/ml solution of purified
preparations of CdtB (25). Four days after microinjection, cells were fixed and

: stained with DAPI to visualize the chromatin. Microinjected cells were identified by
anti Cdig DAPI comicroinjection of FITC-labeled dextran (25). Notice the marked enlargement of
the nuclei and the distention of the cytoplasm in microinjected cells. Similar results were obtained in several repetitions of this experiment (25). Images
were obtained with a Nikon Diaphot inverted fluorescence microscope fitted with a Princeton Instruments Micromax digital camera. Scale bar, 50 p.m.
A coomassie blue—stained SDS-polyacrylamide gel of the purified CdtB protein preparations used in the microinjection studies is shown.

Fig. 4. Effect of mutations in the predicted catalytic and Mg?*-binding sites-of A
CdtB on CDT toxicity. (A) Morphology of Henle-407 intestinal epithelial cells
after treatment with CDT holotoxin containing either mutant or wild-type
CdtB. Henle-407 cells were treated with different extracts of £. coli expressing
the C. jejuni CDT toxin containing either wild-type CdtB or its mutant
derivatives CdtBH1522 or CdtBP855. As a control, cells were treated with an
extract of E. coli carrying the empty vector (vector). Images were captured 48
hours after treatment with a Nikon Diaphot inverted microscope fitted with a
Princeton Instruments Micromax digital camera. Scale bar, 50 pum. (B) Cell
cycle progression of Henle-407 intestinal epithelial cells after treatment with
CDT toxin containing different CdtB mutants. Henle-407 cells were treated in
an identical manner and with the same preparations described in (A). Seventy-
two hours after treatment, cells were fixed, stained, and examined for DNA
content by flow cytometry (27). The peaks corresponding to cells in G,-G., S,
or G, are indicated. A minimum of 10,000 nuclei per sample were analyzed.
(C) Expression of CdtA, CdtC, and wild-type CdtB or its mutant derivatives
CdtBH152Q or CdtBP85S in the extracts used in experiments described in (A)
and (B). Whole-cell lysates (labeled A) and sonicated extracts (labeled B) were
separated by SDS-polyacrylamide gel electrophoresis, and the levels of the
CdtA, CdtB, and CdtC proteins were evaluated by Western immunoblot with

CdtBH1 52Q
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is essential for CDT toxicity. gression to ensure that cell division will not  cell cycle arrest induced by CDT toxins is

DNA damage triggers a series of carefully  proceed to the next phase until the DNA  therefore most likely the consequence of
controlled processes that stop cell cycle pro-  damage has been repaired (28). The G,/M  DNA damage inflicted by the DNase activity
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of its CdtB subunit upon delivery into the
cell. Although DNA damage can lead to cell
cycle arrest in either G,/S or G,/M, CDT-
intoxicated cells invariably arrest in G,/M. A
plausible explanation for this observation
may be that CdtB DNase activity is directed
to single-stranded DNA only present during
the S phase of the cell cycle, which immedi-
ately precedes G,. Alternatively, CdtB may
have access to the chromatin only in G, or
may require a cofactor for its activity that is
only available in this phase of the cell cycle.
Consistent with either hypothesis, purified
CdtB exhibited only very poor DNase activ-
ity in vitro, which was only detectable on
single-stranded DNA templates.

Bacterial infections are increasingly con-
sidered a potential predisposing factor for the
development of cancer. The presence of a
bacterial toxin capable of causing DNA dam-
age in a commonly occurring intestinal
pathogen such as C. jejuni may not only aid
its pathogenicity but may constitute a predis-
posing factor for intestinal cancer.
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