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Localized Rac Activation 

Dynamics Visualized in Living 
-

Cells 
Vadim S. Kraynov,'* Chester Chamberlain,'* Gary M. Bokoch,lz2 

Martin A. S~hwartz,~Sarah Slabaugh,' Klaus M. Hahn'? 

Signaling proteins are thought t o  be tightly regulated spatially and temporally 
in order t o  generate specific and localized effects. For Rac and other small 
guanosine triphosphatases, binding t o  guanosine triphosphate leads t o  inter- 
action wi th  downstream targets and regulates subcellular localization. A meth- 
od called FLAIR (fluorescence activation indicator for Rho proteins) was de- 
veloped t o  quantify the spatio-temporal dynamics of the Racl nucleotide state 
in living cells. FLAIR revealed precise spatial control of growth factor-induced 
Rac activation, in  membrane ruffles and in a gradient of activation at the leading 
edge of motile cells. FLAIR exemplifies a generally applicable approach for 
examining spatio-temporal control of protein activity. 

Rac is a member of the Ras superfamily of 
small guanosine triphosphatase (GTPase) pro- 
teins ( I )  and plays a critical role in diverse 
~rocesses, such as control of cell moruholoev. -, 
actin dynamics, transcriptional activation, and 
apop to~ i~signaling (2). The broad range of 
events controlled by this GTPase requires reg- 
ulation of its interactions with multiple down- 
stream targets. The effects of Rac may in part 
be controlled by regulating the subcellular lo- 
calization of its activation. GTP exchange fac- 
tors (GEFs), which regulate nucleotide ex-
change on Rho GTPases, contain a variety of 
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localization domains and may modulate down- 
stream signaling from Rac (3). Rac induces 
localized actin rearrangements to generate po- 
larized momholoeical~hanees (4 i .  but it has - - \ ,, 

been difficult to explore how Rac activation 
produces localized actin behavior in an intact 
cell. We developed a method based on fluores- 
cence resonanck energy transfer (FRET) that 
quantifies the timing and location of Rac acti- 
vation in living cells. Here, it was used to study 
activation of the Racl isoform in cell motility 
and extracellular signal-induced cytoskeletal 
changes. 

Sensing the Rac nucleotide state required 
introducing a fluorescently labeled biosensor 
into a cell together with a fusion protein com- 
prising Rac and green fluorescent protein 
(GFP) (Fig. IA) (5).This protein biosensor was 
labeled with the acceptor dye Alexa 546, which 
can undergo FRET with GFP. Because the 
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Fig. 1. The Rac nucleotide state bio- 
sensor. (A) Cells expressing CFP-Rac 
are injected with a fragment of p21- 
activated kinase (PBD) labeled with 
Alexa-546 dye (PBD-A), which binds 
selectively to  CFP-Rac-CTP. The Al- 
exa and CFP fluorophores undergo 
FRET when brought close together. 
FRET ~roduces a uniaue fluorescence 
signal' because excitation of CFP 
leads t o  emission from Alexa as en- 

ergy is transferred from the excited CFP fluorophore to the nearby Alexa dye (30).This FRET can be measured within a living cell to map the distribution 
and amount of Rac-CTP binding. By imaging the cell with different wavelengths, both the distribution of Rac and Rac activation can be studied in the same 
cell. CFP excitation and emission are used for overall Rac distribution, whereas CFP excitation and Alexa emission are used for FRET. (B)Fluorescence emission 
from solutions containing 100 nM CFP-Rac bound to  CTPyS at different concentrations of Alexa-PBD. Excitation at 480 nm was used for selective excitation 
of CFP, and direct (nonFRET) excitation of Alexa was subtracted from these spectra (9). In the absence of Alexa-PBD, the emission from CFP (peak at 508 
nm) is maximal and no Alexa emission (peak at 568 nm) is observed. Binding of Alexa-PBD to  Rac-CFP leads to FRET, producing increasing emission at 568 
nm and a decrease at 508 nm. The inset shows variation of the 568-nmJ508-nm emission ratio as a function of Alexa-PBD concentration for CFP-Rac bound 
to  CTPyS (circles) or to  CDP (open squares). Addition of increasing concentrations of unlabeled PBD blocks FRET (open triangles). (C) Variation of this same 
emission ratio with changes in the nucleotide state of Rac. All data points were the average of three independent experiments. 

biosensor was derived from p21-activated ki- 
nase 1 (PAKI) (6, 7), a specific GTP-Rac target 
protein. it binds to GFP-Rac only when the Rac 
is in its activated. GTP-bound form. and pro- 
duces a localized FRET signal revealing the 
amount and location of Rac activation. Because 
the p2 1-binding domain (PBD) contains no na- 
tive cysteines, a cysteine residue could be in- 
troduced at its NH,-terminus and then labeled 
with the cysteine-selective iodoacetamide dye 
Alexa 546. The distance between the Alexa dye 
at the NH,-terminus of PBD and the fluoro- 
phore in GFP was calculated to be 52 A, on the 
basis of the efficiency of FRET and assuming 
random rotation of the fluorophores (Ro = 5 1. 
n = 114. k2 = 213) (8).When cells expressing 
GFP-Rac are injected with the biosensor, the 
changing location of GFP-Rac and the sub- 
population of GFP-Rac molecules in the acti- 
vated, GTP-bound state can be mapped simul- 
taneously. FRET is proportional to the amount 
of GTP binding. allowing quantitation of 
changing activation levels. The name FLAIR 
(fluorescent activation indicator for Rho pro- 
teins) refers to this live-cell imaging technique. 

FRET between the purified proteins Alexa- 
PBD and GFP-Rac in vitro was efficient and 
dependent on GTP-Rac binding. Using fluo- 
rescence excitation wavelengths that selec- 
tively excite GFP (480 nm). fluorescence 
emission was monitored while maintaining a 
fixed concentration of GFP-Rac and varying 
Alexa-PBD concentrations (Fig. 1 B) ( Y ) .  

Binding of Alexa-PBD to GFP-Rac result- 
ed in a change in fluorescence intensity of 
both donor (GFP) and acceptor (Alexa) 
emission. FRET caused the Alexa (accep- 
tor) emission to increase while the GFP 
(donor) emission decreased. The ratio of 
emission at these two wavelengths is a 
sensitive measure of the PBD-Rac interac- 
tion. The corrected Alexa!GFP emission 
ratio ( 9 ) exhibited a fourfold change upon 
saturation of Rac with GTP (Fig. I C). Flu- 
orescence emission changed by <1 0°% 
when unlabeled PBTI or Rac were used 
under the same conditions (10). and com- 
petition with unlabeled PBD blocked FRET 
(Fig. 1B: inset). Change in emission ratio ver- 
sus PBD concentration was fit to the Michaelis 
equation to derive an apparent dissociation con- 
stant (Y,)for PBD-Rac binding of 1.1 i- 0.3 
yM (Fig. 1 B, inset). slightly higher than the 
values determined for various unlabeled PAKI 
fragments (1  1-13). The apparent guanosine 5 ' -
0-(3-thiotriphosphate) (GTPyS) dissociation 
constant was determined at saturating Alexa- 
PBD by fitting the experimental data to the 
Michaelis equation (Fig. IC). The derived val- 
ue of 47 i- 9 nM is consistent with the previ- 
ously reported value of 50 nM (14).  This vali- 
dated the application of FLAIR as an indicator 
of biologically relevant Rac-nucleotide binding. 

Quiescent Swiss 3T3 fibroblasts that are 
stimulated with either serum or platelet-de- 
rived growth factor (PDGF) initiate mem-

brane ruffling and transcription through acti- 
vation of Rac (15. 16). To monitor the 
amount and location of Rac activation during 
this process, the intracellular concentrations 
of Alexa-PBD and GFP-Rac that altered nor- 
mal serum-induced ruffle formation were 
first determined (1  7 )  (Fig. 2, A and B).  Ex- 
ogenous proteins were added below these 
concentrations throughout the studies. Image 
triplets of GFP. FRET, and Alexa fluores- 
cence were taken at each successive time 
point before and after stimulation (18) to 
simultaneously monitor both the changing 
localizations of GFP-Rac and the amount and 
location of Rac activation (Fig. 2, D through 
F). GFP-Rac fluorescence revealed pools of 
Rac at the nucleus, in the juxtanuclear region. 
and in small foci throughout the cell prior to 
stimulation. Confocal and deconvolution im- 
aging showed nuclear Rac to be concentrated 
at the nuclear envelope. and expression and 
immunostaining of epitope-tagged Rac indi- 
cated that this localization was not an artifact 
of GFP tagging (10). Addition of PDGF or 
serum led to formation of moving ruffles 
containing GFP-Rac throughout the cell pe- 
riphery within 2 min. The FRET images 
showed a stark contrast between the amount 
of Rac activation in the ruffles and the nucle- 
us. No FRET was seen at the nucleus despite 
the high concentration of Rac there. while the 
moving ruffles showed the highest FRET. 
restricted to the ruffle. Thus, Rac activation IS  
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restricted to the site o f  actin polymerization, 
independent o f  the overall distribution o f  
Rac. Rac activation remained tightly correlat- 
ed with the position o f  the ruffle even as i t  
moved throughout the cell ( lo),  indicating 
that structures specifically associated with the 
ruffle were either binding and concentrating 
activated Rac or that growth factor-induced 
Rac activation was specifically localized to 
ruffles. FRET was also imaged in cells ex- 
pressing a GFP fusion protein containing a 
mutant form o f  Rho, a close relative o f  Rac 
that does not bind PBD. This GFP-Rho Q63L 
mutant, which generates high levels o f  GTP- 
bound protein, produced specific Rho local- 
izations but no corresponding FRET signals 
(Fig. 3A). The function o f  Rac found at the 
nuclear envelooe remains uncertain. but i t  
may be involved in regulating transcription at 
times later than those tested here, or may be 
activated for an unknown role by  other stim- 
uli. When activation was concentrated in a 
small area such as a ruffle, spatially resolved 
FRET could detect significant activation 
changes too small to appreciably alter the 
overall levels o f  cellular Rac activity. Our 
data showed that FRET provided much great- 
er sensitivity and selectivity than following 
Rac activation simply by imaging Alexa- 
PBD localization (Fig. 3B). FRET produced 
much lower backgrounds and provided com- 
plete selectivity despite the fact that the bio- 
sensor can bind to multiple proteins (Alexa- 

Fig. 2. Rac activation in serum stimulated Swiss 3T3 fibroblasts. (A) To 
determine the amount of GFP-Rac that induces ruffling, quiescent cells 
expressing different amounts of either wild-type or constitutively active Rac 
(GFP-Rac Q61L) [amount determined on the basis of (GFP intensity)/(cell 
area)] were scored for membrane ruffling (77, 78). Each point represents an 
individual cell, placed in the higher (Ruffling) or lower (Nonruffling) row 
depending on whether ruffling was induced. There is a GFP concentration 
below which ruffling was consistently not induced by expression of wild-type 
GFP-Rac. Only cells with Rac expression levels below 250 intensity units on 
this scale were used in biological experiments. The validity of this approach 
was supported by scoring of CFP-RacQ61L, which showed ruffle induction at 
much lower levels of expression. (B) To determine the amount of intracellular 
Alexa-PBD that perturbs normal serum-induced ruffling, cells were scored as 
in (A). Only cells with Alexa-PBD expression levels below 400 intensity units 
on this scale were used in biological experiments. (C) Color scale for the 
intensity of FRET or GFP fluorescence for all images. Red represents high and 
blue is low. The numerical values for the scale are given in the figure legends. 
(D) Rac localization (GFP-Rac) and Rac activation (FRET) before and after 
stimulation of quiescent Swiss 3T3 fibroblasts with serum (lower images are 
3 min after serum addition; cell edge visible to the right and nucleus labeled 
"N"; bar, 17 pm) (77, 78). The cells showed highest accumulation of Rac at 
and around the nucleus before stimulation (GFP-Rac image). Serum addition 
generated multiple moving ruffles that showed FRET, whereas no FRET was 
seen at the nucleus before or after stimulation. Nuclear GFP-Rac associated 
with the nuclear envelope (see text). In the CFP-Rac images, intensities range 
between 300 and 1100. The image of FRET before serum addition is scaled to 
demonstrate the low levels of FRET, with values ranging between 0 and 15. 
In the image of FRET after stimulation, the ruffle conkins the highest values 
of 40 to 65. fE and F) Exam~les of FRET and CFP fluorescence in ruffles. Of 
35 cells stimilated d i th  either serum or PDGF, 31 began ruffling within 15 
min. FRET was seen in the ruffles of all but one of the ruffling cells. Nuclear 
FRET was not seen in any of the cells examined. 

A FRET G F P - R W L  
Fig. 3. Specificity and sensitivity of 
FLAIR. (A) Swiss 3T3 fibroblasts 
were transfected with GFP- 
RhoQ36L, a constitutively active 
mutant of Rho (bar, 22 pm), and 
cells were prepared and imaged as 
described for GFP-Rac (78), with 
comparable concentrations of GFP- 
RhoQ63L and Alexa546-PBD. De- 
spite a constitutively high propor- 
tion of GTP-bound protein, the lo- 
calization of GFP-Rho showed no 
corresponding FRET. The GFP images 
show intensities ranging from 10 to  
185, while those in the FRET image 
range from 0 to  10. (B) Simple lo- : 
calization of Alexa-PBD is inferior to  
FRET in quantifying and localizing 
Rac-GTP binding (bar = 8 pm). The 
ruffle in Fig. 2D is shown here in 
close-up, visualized using FRET, or 
using simple Alexa-PBD localization 
(78). Even though scaling in the 
Alexa-PBD image is optimized for 
detection of the ruffle, the high 
background due to  unbound PBD 
cannot be eliminated, and binding to  
other target proteins is not eliminat- 
ed as it is in the highly specific FRET 
signal. Without prior knowledge of 1 1 
the ruffle's location, this localization would have been difficult t o  discern. Color scale for the 
intensity of FRET or GFP fluorescence is the same as in Fig. 2C. 

PBD also binds to cdc42 and other Rac iso- does reveal that Rac activation is occurring 
forms). Although Alexa-PBD could be steri- there. 
cally hindered from reaching Rac in some Rac is essential for the directed movement 
locations, a FRET signal in a given location o f  Dictyostelium cells during chemotaxis and 
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for extension of the cell anterior during motility 
(19). To determine if Rac activation in polar- 
ized, motile cells occurred in particular subcel- 
lular localizations to regulate localized actin 
behaviors, FLAIR was applied to a monolayer 
of confluent Swiss 3T3 fibroblasts in which a 
wound was scraped, causing cells to become 
polarized and move into the open space (20). 
FLAIR revealed highest Rac activation in the 
juxtanuclear area, and a gradient of Rac 
activity highest near the leading edge and 
tapering off toward the nucleus (Fig. 4A). 
The gradient correlated with the direction 
of cell movement. The difference in Rac 
activity between the rear of the cell and the 
leading edge where activity was highest 
was examined for 16 cells [activity mea- 
sured in squares 3 pm on a side; percent 
gradient = 100 X (front - back)/back]. Of 
16 cells examined, 12 had higher Rac ac- 
tivity at the leading edge (gradient of 
128 + 51%, mean + standard error) and 
four showed a reverse gradient of much 
smaller magnitude (9 + 4%). The gradient 

Fig. 4. Rac nucleotide state in 
motile cells. (A) Two exam- 
ples of Rac activation and lo- 
calization in motile Swiss 3T3 
fibroblasts (bar = 24 pm). 
Cells were induced to move 

A FRET 

by scraping a wound in a cell 
monolayer (20). The highest 
concentration of activated 
Racl was seen in the jux- 
tanuclear region, and a gradi- 
ent of Rac activation was also 1 
observed, highest near the 
leading edge and tapering off 
toward the nucleus. Color 
scale for the intensity of 
FRET or GFP fluorescence is 
the same as Fig. 2C. FRET in- 
tensities are 0 to  18 (top im- 
age) and 0 to  32 (bottom 
image). In the GFP images, 
intensities range from 98 to  
700 (top image) and 100 to 
1100 (bottom image). (B) Ex- 
ample of a cell in the mono- 
layer, away from the wound. 
In such cells, FRET was either 
not detected or found around 
the cell edge. (GFP intensi- 
ties = 0 to  1023, FRET inten- 
sities = 0 to  10). 

was broader than the narrow area at the 
leading edge where actin polymerization 
occurs (21, 22). Rac activation over this 
broad gradient could activate multiple 
downstream effectors known to be required 
for motility, to depolymerize fiber net- 
works for monomer recycling or deliver 
molecules to the leading edge (22). Other 
studies have shown tight localization of 
molecules downstream of Rac at the lead- 
ing edge or in regions immediately behind 
it to regulate a variety of functions associ- 
ated with motility (23). No Rac activation 
gradient was seen in cells within the mono- 
layer, away from the wound edge. Of 10 
cells examined, three showed no discern- 
ible FRET, and seven showed FRET around 
the cell periphery, either in isolated spots 
(four cells) or uniformly around the edge 
(three cells, Fig. 4B). 

The prevalence of Rac activation around the 
nucleus was quantified in 16 cells. All cells 
showed both juxtanuclear and nuclear GFP flu- 
orescence. Of these, 14 showed juxtanuclear 

Direction of movement 

FRET 

FRET, and none showed nuclear FRET. Nota- 
bly, small areas of the nucleus sometimes 
showed a FRET signal, but these could be due 
either to cytoplasmic Rac associated with the 
nuclear envelope or to juxtanuclear localiza- 
tions lying over the nucleus. The localization of 
activation within the juxtanuclear Rac often did 
not parallel Rac distribution, with "hot spots" of 
FRET within areas of lower Rac concentration. 
The meaning of the juxtanuclear Rac localiza- 
tions is unclear, but their morphology and dis- 
tribution suggests activation within the endo- 
plasmic reticulum (ER), golgi, or vesicle pop- 
ulations, consistent with recent reports suggest- 
ing an important role for Rac in ER to golgi 
transport, and in pinocytic vesicle cycling (2). 

Quantifying the spatial distribution of 
Rac signaling in living cells indicated that 
Rac activation was tightly coupled to small 
membrane ruffles, yet was broadly distrib- 
uted as a gradient at the leading edge of 
motile cells. This suggests that the cell uses 
different distributions of activated Rac to 
produce specific cellular behaviors. Rac 
and other GTPases are not simple binary 
switches, but different kinetics of activa- 
tion produce profoundly different results 
(24). FLAIR may also be used to examine 
the kinetics of rapid activation changes, 
and the approach can potentially be applied 
to many other types of protein behavior. 
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heavy chain and one to six light chains. My­
osin I is diffusely distributed throughout the 
cytoplasm (3). It concentrates near cortical 
surfaces and in the perinuclear region (3), and 
it appears to mediate plasma membrane ex­
tension (3, 4), vesicle and organelle transport 
(5), and mechanochemical regulation of cal­
cium channels in hair cells (6). 

Affinity-purified polyclonal antibodies to 
bovine adrenal myosin I recognized a 120-kD 
protein that is larger than the antigen (116 kD) 
(7). Confocal and electron microscopy showed 
cytoplasmic and nuclear staining with these 
antibodies. Biochemical assays on nuclei dem­
onstrated that the 120-kD protein binds adeno­
sine triphosphate (ATP) and calmodulin, is as­
sociated with K+-EDTA ATPase activity, and 
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A nuclear isoform of myosin I p that contains a unique 16-amino acid amino-
terminal extension has been identified. An affinity-purified antibody to the 
16-amino acid peptide demonstrated nuclear staining. Confocal and electron 
microscopy revealed that nuclear myosin I p colocalized with RNA polymerase 
II in an a-amanitin- and actinomycin D-sensitive manner. The antibody co-
immunoprecipitated RNA polymerase II and blocked in vitro RNA synthesis. This 
isoform of myosin I 0 appears to be in a complex with RNA polymerase II and 
may affect transcription. 
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