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malian DNase I and Escherichia coli CdtB. 
DNase I proteins-enzymes that cut 

DNA into smaller pieces-share con-
served amino acid residues that are impor- 
tant for enzyme activity. Both groups ( I ,  
2) tested mutant CdtB proteins containing 
altered conserved residues to see whether 
the toxins were still potent. Each mutation 
resulted in a substantial decrease in CdtB 
toxicity. Elwell and Dreyfus (2) correlated 
the decrease in toxicity with a concomitant 
decrease in DNase I activity in vitro. 
Meanwhile, Lara-Tejero and Galan ( I )  
showed that CdtB became localized in the 
nucleus of toxin-treated cells, consistent 
with its proposed role as a DNase (I). 

Identification of CDT as a DNase irnrne- 
diately suggests a model for how the toxin 
arrests the host cell in G2. Damage to the 
DNA induces cell cycle arrest by triggering 
signaling cascades that keep Cdc2, a key 
regulatory protein, in an inactive (phospho- 
rylated) form (5) (see the figure). Damage 
to the DNA inflicted by CDT results in acti- 
vation of a damage response pathway, and 
accumulation of inactive Cdc2 resulting in 
arrest of cells in G2 (4). Continued biosyn- 
thesis by these arrested cells may result in 
the characteristic distension of the cyto- 
plasm associated with CDTs. DNA damage 
inflicted by CdtB results in chromatin frag- 
mentation and eventual cell death. 
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Whereas DNA damage normally re- 
sults in arrest of cells at either GI (just be- 
fore DNA replication) or G2 (just before 
cell division), CDT-treated cells invariably 
halt in G2 only. Lara-Tejero and Galan 
propose that CdtB damages DNA only 
when the DNA is in a vulnerable physical 
state, that is, during replication in S phase. 
Indeed, exposure of cells to CDT during 
DNA replication is required for arrest at 
the subsequent G2; exposure to CDT after 
DNA replication is complete allows cells 
to progress through mitosis and not to halt 
until the next G2 (see the figure) (4). 

An unusual aspect of the CDT family is 
that its members are made by diverse sorts 
of bacteria. The only common feature of 
all known CDT-producing bacteria is that 
they infect epithelial cell layers, such as 
those comprising the gastrointestinal or 
genitourinary tract. Epithelial cells would 
be especially sensitive to the cell cycle-ar- 
resting activity of CDTs, because they 
continuously proliferate and differentiate 
as they migrate from deeper layers toward 
the epithelial surface, from which they are 
eventually shed. Disruption of normal ep- 
ithelial cell turnover could lead to break- 
down of the epithelial barrier, permitting 
easier access of bacteria and their secreted 
toxins to underlying tissues. Cells of the 
immune system are another potential tar- 
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E
volutionary biologists have developed 
an excellent understanding of the selec- 
tive factors that shape the way in which 

a given organism allocates resources to male 
and female offspring-a process called sex 
allocation (I).Studies of sex allocation have 
provided explanations for a wide range of 
phenomena-for example, the variation 
among animals in the proportion of offspring 
that are male (sex ratio), pollen-ovule ratios 
in plants, and the age of sexual transition in 
organisms such as certain coral reef fish that 
change sex during their lifetime (I, 2). The 
strength of empirical support for the exis- 
tence of sex allocation and the selective fac- 
tors that shape it allows studies of sex alloca- 
tion to address more detailed questions about 
natural selection. Furthermore, sex alloca- 
tion theory can be used to elucidate the pop- 
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ulation structure and epidemiology of medi- 
cally important pathogens such as the proto- 
zoan parasites that cause malaria. 

Precision of Adaptation 
At a time when school boards in the United 
States are debating whether to include the 
theory of evolution by natural selection as 
part of the curriculum, studies of sex allo- 
cation are providing some of the best sup- 
port for this theory (2). There are several 
reasons for this: (i) sex allocation can often 
have a clear, immediate, and direct effect 
on fitness; (ii) theoretical models are based 
on relatively simple trade-offs that often re- 
ly on only a small number of key variables; 
and (iii) the important variables are usually 
easy to measure. Moreover, relative to most 
other traits, sex allocation has the advan- 
tage that predictions of optimal allocation 
patterns can be derived from first princi- 
ples that are directly linked to the most ba- 
sic elements of evolutionary theory. 

For example, extreme sex ratio adjust- 
ments in fig-pollinating wasps confirm 

get for CDTs because they proliferate in 
response to antigen. Supporting this hy- 
pothesis is the finding that certain CDTs 
inhibit proliferation of monocytes and 
lymphocytes (3, 6),potentially affecting 
both innate and acquired immunity. 

Now that CDTs have been identified as 
DNases, many exciting avenues for investi- 
gation should open up. For example, a next 
step will be to identify the host cell or bacte- 
rial factors that regulate the DNase activity 
of CDTs or that deliver CdtB to the nucleus 
(perhaps with the help of the other two CDT 
subunits). Further amino acid mutation 
studies will allow rigorous analysis of the 
importance of CdtB's DNase activity in ani- 
mal models of infection. With the finding 
that CDT family members are DNases. 
pathogenic bacteria have provided us with 
yet more tools to study basic biological pro- 
cesses in the eukaryotic cell--in this case. 
control of the cell cycle. 

References 
1. M. Lara-Tejero and j. E. Calln, Science 290,354 (2000). 
2. C. A. Elwell and L. A. Dreyfus, Mol. Microbiol 37, 952 

(2000). 
3. C. L. Pickett and C.A.Whitehouse, Trends Microbiol. 7, 

292 (1999). 
4. C. Comayras eta/.. Infect. Immun. 65, 5088 (1997); S. 

Y. Peres etal., Mol. Microbiol. 24, 1095 (1987). 
5. C. P. Dasika et dl., Oncogene 18,7883 (1999). 
6.  V. Gelfanova,E. J. Hansen, S. M. Spinola, Infect Immun. 

67, 6394 (1999); 8.j. Shenker et dl., 1. Immunol. 162, 
4773 (1999). 

many of the tenets of evolutionary theory 
(3-5). There are many species of fig-polli- 
nating wasps, and in each case, female wasps 
pollinate and lay eggs in the enclosed fruit of 
their own host fig species. Mating occurs be- 
tween the wasps that develop in the same 
fruit, before the females disperse. Typically. 
if only a single female lays eggs in a fruit. 
she produces an extremely female-biased sex 
ratio (only 5 to 10% of the offspring are 
males). As the number of females laying 
eggs in a fruit increases, the sex ratios in the 
broods become less biased (see the figures. 
next page, top and bottom). Although there 
are deviations between observed sex ratios 
and those predicted by theory (6).the fit is 
often very close. 

The observed deviations from the pre- 
dicted optimal sex ratio are not random. 
When different fig-pollinating wasp species 
are compared the mean sex ratio of off- 
spring produced by a given number of fe- 
males laying eggs in a fruit is closest to the- 
oretical predictions for the situations (num- 
ber of females laying eggs in a fruit) that are 
encountered most frequently in that species 
(4). Furthermore, females show a greater 
ability to alter their brood sex ratios (in re- 
sponse to variations in the number of fe- 
males laying eggs in the same fruit) in those 
species where the number of females enter- 
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ing a fruit is more variable (4) directly (11). One example, with 
(see the figure, next page, top). potentially important benefits, is 
Finally, females show less varia- the use of sex allocation patterns 
tion in the sex ratio of their in malaria (Plasmodium) and 
broods in the situations (number other protozoan parasites to infer 
of females laying eggs in a fruit) the amount of inbreeding (also 
that they encounter most fre- called the selfing rate, which is 
quently (5). Although these data defined as the proportion of a fe- 
provide strong evidence for adap- male's daughters that are fertil- 
tive sex allocation, they also sug- ized by her sons). Because the 
gest that organisms vary in the rate of inbreeding in these para- 
degree to which their behavior sitic species can influence the 
fits theoretical optima. evolution of resistance to vac- 

Sex allocation offers excellent cines and drugs, inbreeding esti- 
opportunities for examining the mates are important for design- 
constraints and limits on adapta- ing effective control and treat- 
tim unfOmte@, the best under- A fig of one's own. Precision of adaptation and the sex ratios of fig-polli- ment programs (12). ~i~~~~ mea- 
stood constraints on adaptation nating wasps. Shown are the observed sex ratios (circles) and theoretical sures inbreeding rate using 
tend to be striking developmental optima (culved lines) for different numbers of female fig-pollinating wasps molecular genetics can be difl- 
or phylogenetic examples that are (from three species of the genus Pegoscapus) laying eggs in a fruit The cult to obtain, and past estimates 

numbers next to  the circles show the relative frequency with which that have been extremely controver- of limited number of females lays eggs in a fruit in naturethat  is, in the fig species sial (12). Sex allocation theory Very little is Imown about pollinated by P. herrei, 0.96 of fruit have only one female enter (pollinate 
limiting *ptation that be and lay eggs), 0.03 have two females enter, and 0.01 have three enter.The the inbreeding rate to be 

to most (7), &sewed ratios of progeny are dose& to theoretical situations (number estimated more because 
such as mutation, antagonistic females laying eggs in a fruit) that are encountered most frequently (4. the occurrence of inbreeding 
pleiotro~ (genes that One The obselved shifts in sex ratio are greatest in species where the number of skews the sex 
aspect of adaptation while reducing females laying eggs in a fruit is more variable. in favor of females, analogous to 
another), and processing of infor- the situation in fig wasps (13, 
mation fhn  the environment. subsequent progeny, whereas the sons dis- 14). The higher the level of inbreeding, the 

The most strikmg sex ratio patterns have perse. In high-quality territory, having a greater is the predicted female bias of the 
been found in insects, especially the Hy- helper is advantageous and so predomi- sex ratio. The amount of inbreeding (F) 
menoptera (ants, bees, wasps). The hap- nantly daughters are produced, whereas in can be predicted from the observed sex ra- 
lodiploid genetic system of these insects al- low-quality territory the increased competi- tio (r) by the refreshingly simple equation 
lows females to control the sex of ofipring tion for food means F = 1 - 2r. Conse- 
by regulating whether eggs are fertilized or that a helper is a disad- quently, if we assume 
not--males are haploid (single set of chromo- vantage and so mainly that the sex ratio theo- 
somes) and develop h m  unfertilized eggs, sons are produced. An- ry is correct, then the 
whereas females are diploid (double set of other complication for inbreeding rate can be 
chromosomes) and develop from fertilized vertebrates is that the estimated from sex ra- 
eggs. In contrast, vertebrates m l y  exhibit ex- combination of factors ti0 data. An advantage 
treme skews in sex d o ,  which may reflect a influencing sex ratio of this method is that 
constraint imposed by chromosomal sex d e  can be complex. This sex ratio data can be 
termination (1). However, recent studies of complexity decreases collected relatively 
mammals and particularly birds (for example the selective advantage easily from a number 
the Seychelles warbler) have shown some of shifting the sex ratio of populations and 
striking shifts in the sex ratio of offspring (8), in response to any sin- species, allowing gen- 
suggesting that, contrary to popular assump gle factor. In most eralizations to be made 
tions, genetic sex determination is not an all- wasps, the selective (see the figure, next 
p o d  constraint on sex a l l d o n .  

There are alternative explanations for 
why fewer cases of extreme sex ratio skews 
exist in vertebrates. A fig wasp may be able 
to assess the number of females currently 
laying eggs in the same h i t  more easily 
than a mammal can assess factors intluenc- 
ing sex allocation, such as the amount of 
lactation that she will be able to provide or 
the genetic quality of her mate (9). Extreme 
shifts in vertebrate sex ratios may represent 
cases where variables can be assessed reli- 
ably. For example, among Seychelles war- 
blers the variable is the quality of territory, 
which is determined by the availability of 
their food source (insects). The daughters 
of warbler offspring help their parents rear 

consequences of any Broody female wasps. The variation (ob- page). In cases where 
particular brood sex in sex ratios of offspring both indirect sex ratio 
ratio are immediately when only one female lays eggs in a fig data and direct genetic 
realized. By contrast, fruit (the dashed line represents binomial estimates of the in- 
adult life-spans in variance). The more frequently only one breeding Ate are avail- 
most vertebrates are female lays eggs in  a f ig  fruit, the less able, they are in van-  
relatively long, result- variation there is in  the sex ratio of the titative agreement, 
ing in complications progeny. [Adapted from (41 supporting the use of 
that arise from over- this approach (14). 
lapping generations (10) or interactions be- More generally, sex allocation theory 
tween siblings (6). applied to protozoan parasites provides 

support for the application of evolutionary 
Using Sex Allocation to Infer optimization models to infectious disease 
Characteristics of a Population research (14). Despite having to assume 
Sex allocation provides an easy way to esti- equilibrium states (not an obvious feature 
mate population characteristics that are of microparasite populations), simple the- 
technically difficult or expensive to measure ory is able to explain variation in a life- 
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More daughters for inbreeders. (Left) Sex ratios of progeny can be used to  estimate the rate of 
inbreeding in protozoan blood parasites such as those causing malaria. The predicted sex ratio 
(proportion of gametocytes that are male) is plotted against the inbreeding rate (74). When the 
rate of inbreeding is high, the sex ratio is constrained by the need to  produce enough male ga- 
metes to  fertilize female gametes. This constraint is determined by c, the mean number of viable 
gametes released by a male gametocyte (cis equivalent t o  the maximum number of times that a 
male could mate). (Right) Sex ratios can be used to  estimate the rate of inbreeding in the malaria 
parasite Plasmodium and in the intestinal parasite Toxoplasma. Sex ratios of progeny in malaria 
(and other blood parasites) are extremely variable, suggesting that the inbreeding rate also varies 
enormously. This is not unexpected given that the degree of inbreeding is likely t o  depend on in- 
fection rates:The greater the number of parasites infecting a host, the lower will be the rate of in- 
breeding (74). In contrast, the greater female bias in the sex ratios of the progeny of intestinal 
parasites such as Toxoplasma suggests higher rates of inbreeding. 

history trait (sex ratio) across a taxonomi- 
cally diverse range of protozoan parasites 
(14, 15). In particular, it provides a clear 
demonstration of the importance of popu- 
lation structure in determining natural se- 
lection in parasitic protozoans. Theory 
suggests that the virulence of parasites 
should respond to the same changes in 
population structure (1 6). 

Applying sex allocation to the predic- 
tion of characteristics of a population or 
species has great potential because infer- 
ences can be made about any factor that 

Initially driven by attempts to explain 
the sex ratios o f  seemingly obscure in- 
sect species, sex allocation studies are 
now yielding valuable evidence in sup- 
port of the theory of evolution by natural 
selection, and are also proving important 
for elucidating the biology of protozoan 
parasites. 
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