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Magnetotunneling spectroscopy is used as a noninvasive and nondestructive 
probe t o  produce two-dimensional spatial images of the probability density of 
an electron confined in a self-assembled semiconductor quantum dot. The 
technique exploits the effect of the classical Lorentz force on the motion of a 
tunneling electron andcan be regarded as the momentum (k) space analog of 
scanning tunneling microscopy imaging. The images reveal the elliptical sym- 
metry of the ground state and the characteristic lobes of the higher energy 
states. 

A quantum dot (QD) is a nanostructure that can 
confine the motion of an electron in all three 
spatial dimensions. This gives rise to a set of 
discrete and narrow electronic energy levels, 
similar to those in atomic physics. The sharp 
line optical absorption and emission spectra of 
semiknductor QDs produced by Stranski-Km- 
tanow self-assembly (1-4) or by colloidal syn- 
thesis (5,6)  have now been extensively studied, 
but to date, there have been no reportedmea- 
surements of the detailed spatial form of the 
wave functions of the ground and excited state 
levels of QDs. Although scanning tunneling mi- 
croscopy (STM) and related techniques (7-9) 
are powerfid tools for imaging electronic states 
on or close to condensed matter surfaces, a 
different technique is required for QDs, which 
are embedded deep below the surface. We de- 
scribe how magnetotunneling spectroscopy can 
be used as a noninvasive and nondestructive 
probe to produce full spatial maps of the wave 
function of the ground and excited states of 
electrons in a QD. The technique therefore 
serves as a test bed for theoretical models of the 
electronic states in this type of nanostructure. In 
particular, model calculations (10) of probability 
density distributions for the ground and excited 
states of a QD (Fig. 1A) can be compared with 
our measurements. 

In our device, a layer of InAs self-assem- 
bled QDs is embedded in the center of an 
undoped 12-nm GaAs quantum well (QW), 
which is sandwiched between two 8.3-nm 
Al,,Gs,,As tunnel barriers. The layer of InAs 
QDs was grown by depositing 2.3 monolayers 

of InAs. Undoped GaAs spacer layers of 50-nm 
width separate the barriers from two contact 
layers with graded n-type doping (11). The 
device acts as a resonant tunneling diode in 
which electrons can tunnel into the QD from a 
doped contact layer on the opposite side of the 
barrier. Here we focus on a structure grown on 
a (3 1 1)B-oriented GaAs substrate, although we 
obtained similar results for dots grown on 
(100)-oriented GaAs. For comparison, we also 
studied two control samples grown with the 
same sequence of layers, except that one has 
only a thin InAs two-dimensional wetting layer 
(i.e., it contains no QDs) and the other has no 
InAs layer at all. 

The conduction band profile of the device is 
shown in Fig. 1B. X and Y define the two main 
crystallographic axes, [ ~ l i ]  and [233], respec- 
tively, of the (3 11) plane as shown in the inset. 
The layer of InAs QDs introduces a set of 
discrete electronic states below the GaAs con- 
duction band edge. At zero bias, equilibrium is 
established by some electrons diffusing from 
the doped GaAs layers and filling the dot states. 
The resulting negative charge in the QW pro- 
duces depletion layers in the region beyond the 
(AlGa)As barriers. When a voltage, V, is ap- 
plied, resonant tunneling though a particular 
QD state leads to a peak in the current-voltage 
plot, I(V), whenever the energy of the state is 
resonant with an adjacent filled state in the 
negatively biased electron emitter layer, located 
at the left of the tunnel barriers. 

In the low-temperature (T = 4.2 K) I(V) 
characteristics in reverse bias (negative bias to 
emitter) in the presence of a magnetic field, B, 
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plitude, whereas the others (e, to e7) have a 
nonmonotonic magnetic field dependence. For 
example, e, is not visible at  B = 0 T and 
develops with increasing field. The amplitude 
of all peaks is quenched at high field. 

The resonant peaks are not observed in the 
two control samples and so are related directly 
to the presence of InAs QDs. For each resonant 
feature, we observe a thermally activated cur- 
rent onset, which is an unambiguous signature 
of an electron tunneling from a thermalized 
Fermi distribution of emitter states into an in- 
dividual, discrete, and sharp QD energy level 
(12, 13). Each resonance extends over a fairly 
wide voltage range (-10 mV). This is not 
surprising as it reflects tunneling from a broad 
energy distribution of occupied states in the 
emitter. The zero-dimensional states them- 
selves have a much narrower linewidth. Previ- 
ous tunnel current measurements at low tem- 
peratures on structures containing a large en- 
semble of QDs have also revealed the presence 
of resonant tunneling peaks due to individual 
dots in the range of bias close to the threshold of 
current flow (13-18). Here, we focus on the 
magnetic field dependence of the QD resonanc- 
es and on how this provides detailed informa- 
tion about the form of the wave function asso- 
ciated with an electron in a QD. 

Fig. 1. (A) Probability density isosurfaces for 
the ground (1000)) and excited (1 100) and 
1200)) states of a pyramidal InAsIGaAs dot as 
calculated in (70). (B) Schematic conduction 
band profile under an applied bias of an n-i-n 
GaAsI(A1Ga)As double-barrier resonant tunnel- 
ing diode incorporating lnAs self-assembled 
quantum dots (QDs). (Inset) Orientation of the 
magnetic field, B, and current, I, in the magne- 
totunneling experiment. X and Ydefine-the two 
main crystallographic axis, [OI 11 and [233], re- 
spectively, in the (311)-oriented GaAs sub- 
strate. a and p indicate, respectively, the direc- 
tion of B and of the momentum k acquired by 
the tunneling electron because of the action of 
the Lorentz force. 
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The magnetic field dependence of the arn- 
plitude of the peak of the differential conduc- 
tance is plotted (Fig. 2B) for each of the reso- 
nances, e ,  to e,. We show G(B) plots rather 
than I(B) plots because the former allows us to 
identify more clearly the magnetic field depen- 
dence of each resonant feature. However, al- 
most identical plots are obtained by plotting the 
B dependence of the measured values of the 
current or of the integrated current, Speak 
I(V)dV. The plots show three characteristic 
types of magnetic field dependence: Type I 
(peaks e l ,  e,, and e,) shows a maximum in 
G(B) at B = 0 T followed by an almost mono- 
tonic decay to zero at around 8 T; type 11 (e, 
and e,) shows almost no conductance at B = 0 
T ,  with G(B) increasing to a broad maximum at 
-4 T, followed by a gradual decay to zero; and 
type 111 (e, and e,) shows two clear maxima in 
G at B = 0 T and -5 T, with G(B) falling to a 
minimum value of almost zero between these 
maxima. The behavior of the type 11 peaks is 
particularly 'interesting as it suggests that the 
associated tunneling transition is forbidden for 
B = 0 T but becomes allowed when the mag- 
netic field is applied. 

We can understand the magnetic field de- 
pendence of the resonances in terms of the 
effect of B on a tunneling electron. Let a, P, 
and z indicate the direction of B, the direction 
normal to B in the growth plane (X, Y), and 
the normal to the tunnel barrier, respectively 
(see Fig. 1B). When an electron tunnels from 
the emitter into the dot, it acquires an addi- 
tional in-plane momentum given by (19) 

where A s  is the effective distance tunneled 
along z and f'z is Planck's constant divided by 
2n. This effect can be understood semiclassi- 
cally in terms of the increased momentum 
along P, which is acquired by the tunneling 
electron because of the action of the Lorentz 
force. In terms of mapping out the spatial form 
of an electronic state, we can envisage the effect 
of this shift in k space as analogous to that of the 
displacement, in real space, of the atomic tip in 
an STM imaging measurement. 

The applied voltage allows us to tune reso- 
nantly to the energy of a particular QD state. 
Then, by measuring the variation of the tunnel 
current with B, we can determine the size of the 
matrix element that governs the quantum tran- 
sition of an electron as it tunnels from a state in 
the emitter layer into a QD. In our experiment, 
the tunneling matrix element is most conve- 
niently expressed in terms of the Fourier trans- 
forms Qi(,?(k) of the conventional real space 
wave funmons (20, 21). Here the subscripts i 
and f indicate the initial (emitter) and final (QD) 
states of the tunnel transition. Relative to the 
strong spatial confinement in the QD, the initial 
state in the emitter has only weak spatial con- 
finement. Hence, in k space, Qi(k) corresponds 
to a sharply peaked function with a finite value 

only close to k = 0. As the tunnel current is Eq. 1. Thus, by plotting G(B) for a particular 
given by the square of the matrix element in- direction of B, we can measure the dependence 
volving Qi(k) and QQD(k), the narrow spread of of I QQD(k) I along the k direction perpendic- 
k for Qi(k) allows us to determine the form of ular to B. Then, by rotating B in the plane (X, Y). 
QQD(k) by varying B and hence k according to and making a series of measurements of I(B) 

Fig. 2. (A) Low-temperature (T = 4.2 K) I(V) characteristics in reverse bias (positive biased 
substrate) in the presence of a magnetic field, B, perpendicular to the current. B is increased in steps 
of '0.5 T, and the corresponding curves are displaced along the current axis for clarity. (Inset) 
Differential conductance, C = dl/&, at B = 3.5 T. The corresponding I(V) characteristic is plotted 
in the main part of the figure as a dark line. (B) Magnetic field dependence of the peak of C 
associated to the resonances e, to e, shown in (A). Continuous lines are guides for the eye. 

Fig. 3. (A) Distribution in the plane (k, k,) of the differential conductance, C = dl/&, for three 
representative states. This provides a spatial map of I cPQD(k, k,) 1 2, the square of the Fourier transform, 
cPQD(k k,), of the probaJility dgnsity of the electron confined In the dot. X and Y define the two main 
crystaagraphic axis, [OI I ]  and [233], respectively, in the p11)-oriented CaAs plane. (B) De endence of 
C on magnetic field for B parallel and antiparallel to [OI 11 for the same states shown in L). 
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with B set at regular intervals (10  - 10") of the 
rotation angle 0, we obtain a full spatial profile 
of I @,,(k,, kk,)'. This represents the projec- 
tion i n k  space of the probability density of a 
given electronic state confmed in the QD. 

The model provides a simple explanation 
of the magnetic field dependence of the res- 
onant current features e l  to e,. In particular, 
the forbidden nature of the tunneling transi- 
tion associated with e, and e, at B = 0 T is 
due to the odd oaritv of the final state wave 

A	 . 


function, which corresponds to the first ex- 
cited state of a QD. 

Figure 3A shows the spatial form of G(B)-
1 @,,(k, k,) 1 2 ,  in the plane (k,,, k,) for the three 
representative QD states corresponding to the 
peaks e,, e,, and e,. The measured values of 
G(B) for two directions of B, parallel and anti- 
parallel to the [Oli] axis, are shown (Fig. 3B). 
The contour plots reveal the characteristic form 
of the probability density distribution of a 
ground state orbital and the characteristic lobes 
of the higher energy states of the QD. The 
electron wave function has a biaxial symmetry 
in the growth plane, with axes corresponding 
quite closely (within measurement error of 10") 
to the main crystallographic directions [O 171 and 
[233]. In particular, detailed examination of the 
data reveals that the projected probability den- 
sity of the ground state has an elliptical form. 
with the major axis along the [Oli] direction. 

Although our measurements reveal detailed 
information about the symmetry of the QD 
wave functions with respect to the in-plane 
coordmates, they give us no information about 
the z dependence Thls 1s dlrectly related to the 
morpholo~y of the QDs In general, the dot 
helght 1s much smaller than the dimensions of 
the base (I) Therefore, the quantization energy 
of confinement along z is much hlgher than that 
for in-plane motion. o u r  discussion of the mag- 
netotunneling data has made two important and 
reasonable assumptions. The first is that the 
motion along z is separable from the in-plane 
motion. This approximation allows us to label 
the QD state using the quantum numbers 11, and 
TI, for the in-plane motion and n, for motion 
along z.Our second assumption is that all of the 
observed peaks involve final (QD) states that 
share the same type of quantum confinement 
along z, i.e., have the same value of TI, (= 0). 

In recent years, several different approaches 
have been used to calculate the eigenstates of 
QDs. They include perturbation effective mass 
approaches (I), eight-band k . p  theory (10. 22, 
23). and empirical pseudopotential models 
(24). Calculations generally depict the f o ~ m  of 
the wave functions as plots of the probability 
density in real space, / / A tunnel cur- qQDv)'. 
rent measurement can provlde no information 
about the phase of the wave function, but, in 
general, the phase of qQ,(r)  is easily obtained 
from a model calculation. Once the phase factor 
is known, it is a straightforward task for theo- 
reticians to Fourier transform the calculations of 

the wave function into k space. A direct com- 
parison could then be made with our spatial 
maps. 

Our technique has allowed us to observe 
successive features in I ( V )  corresponding 
to resonant tunneling through a limited 
number of discrete states whose wave func- 
tions display the symmetry of the ground 
state and first and second excited states of 
QDs. However, the simple device configu- 
ration does not permit us to determine 
whether an excited state peak and a ground 
state peak correspond to the same QD. This 

question be by experiments 
on structures with electrostatic gates (18).  

Despite the large number of QDs in our 
sample (1 06 to 107 for a 1 OO-I*m-diameter 
mesa)3we a lumber of 
resonant peaks over the bias range (-100 
mV ) close to the threshold for current flow, 
This behavior has been reported in earlier 
studies (13-18) and. although not fully un- 
derstood, 1s orobablv related to the limited 
number of channels in the emit- 
ter that can transmit from the 
doping layer to the QDs at low bias. There 
is no reason to believe that the dots studied 
are atypical of the distribution as a whole, 

lMagnetotunneling provides 
us with a means of probing the spatial form of 
the wave functions of electrons confined in 
zero-dimensional QDs. The technique is both 
noninvasive and nondestructive and allows us 
to probe spatially quantum states that are 
buried hundreds of nanometers below the 
surface. 
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Neuropathic pain arises as a debilitating consequence of nerve injury. The 
etiology of such pain is poorly understood, and existing treatment is largely 
ineffective. W e  demonstrate here that glial cell line-derived neurotrophic 
factor (GDNF) both prevented and reversed sensory abnormalities that devel- 
oped in neuropathic pain models, without affecting pain-related behavior in 
normal animals. GDNF reduces ectopic discharges within sensory neurons after 
nerve injury. This may arise as a consequence of the reversal by CDNF of the 
injury-induced plasticity of several sodium channel subunits. Together these 
findings provide a rational basis for the use of GDNF as a therapeutic treatment 
for neuropathic pain states. 

The neurotrophlc factor GDNF promotes sur- 
\ i\ a1 of a subgroup of developing senson, 
neurons (1) In adult anlmals, approximately 
60% of dorsal root ganglion neurons normal- 
ly express receptor components for GDNF (2, 
3), and this factor promotes neunte out-

growth in vltro and regeneration In v ~ v o  of 
both large- and small-caliber sensory neurons 
(4, 5) GDNF 1s known to have neuroprotec- 
ti\ e effects on damaged adult sensorq neu-
rons, including the reversal of axotomy-in- 
duced changes in gene expression (2. 1,. 
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