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can be differentially regulated in vivo. The 
rapid expression of A20 is essential for lim- 
iting inflammatory responses and the damage 
those responses cause in multiple tissues. 
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Events that stall bacterial protein synthesis activate the ssrA-tagging machin- 
ery, resulting in  resumption of translation and addition of an 1I-residue peptide 
t o  the carboxyl terminus of the nascent chain. This ssrA-encoded peptide tag 
marks the incbmplete protein for degradation by the energy-dependent ClpXP 
protease. Here, a ribosome-associated protein, SspB, was found t o  bind spe- 
cifically t o  ssrA-tagged proteins and t o  enhance recognition of these proteins 
by ClpXP. Cells wi th  an ssp6 mutation are defective in  degrading ssrA-tagged 
proteins, demonstrating that SspB is a specificity-enhancing factor for ClpXP 
that controls substrate choice. 

Members of the ClpiHsp100 adenosine structured peptide sequences displayed on 
triphosphatase (ATPase) family are hexam- otherwise native proteins (12-15). The best 
eric, ring-shaped proteins that catalyze the characterized recognition peptide is the 
unfolding of specific target proteins (1-8). ssrA tag, AANDENYALAA, which targets 
ClpiHsp100-catalyzed unfolding reactions proteins to the ClpX and ClpA ATPases (7,- .  

have been implicated in a variety of intra- 8,  12). Despite recent progress in identify- 
cellular processes, including reactivating ing substrates for the ClpiHsplOO proteins 
heat-damaged proteins during stress, mod- and the peptide signals important for their 
ulating the transformation of prionlike fac- recognition, no simple sequence code has 
tors, and disassembling or degrading pro- emerged that marks proteins as a specific 
tein complexes involved in transposition, substrate for a particular unfolding ATPase. 
DNA replication, and virulence (9, 10). Furthermore, although both ClpXP and 
Many family members also participate di- ClpAP efficiently degrade ssrA-tagged pro- 
rectly in protein degradation by unfolding teins in vitro, ClpXP is largely responsible 
proteins and transporting the unfolded for degradation of these proteins in the cell 
chain to an associated peptidase complex. (12). These observations suggested that ad- 
For example, the ClpX unfoldase associates ditional cellular factors might serve to 
with the ClpP serine peptidase to form the modulate substrate recognition in vivo. 
multiring ClpXP protease (6, 11). Initial evidence for a ClpX-stimulatory 

ClpiHsp100 ATPases appear to recognize factor was observed during purification of 
their substrates by binding to short. un- Escherichia coli ClpX, and a high-salt 

wash of partially purified ribosomes was 
found to be especially rich in this activity 
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stimulatory factor (18)until a single major 
protein of -20 kD was visible by SDS- 
polyacrylamide gel electrophoresis (SDS- 
PAGE). NH,-terminal sequencing identi-
fied this protein as SspB (stringent starva- 
tion protein B), a molecule of unknown 
function that is part of an operon induced 
by starvation (19). To demonstrate that 
SspB was indeed the stimulatory factor, we 
overproduced the protein (20) and purified 
it to apparent homogeneity (Fig. 1B). 

Rates of GFP-ssrA degradation by ClpXP 
were determined in the presence or absence 
of SspB (Fig. 1C). SspB reduced the 
Michaelis constant (K,,) for this substrate 
by a factor of 4 to 5, indicating that it 
enhances productive interactions between 
ClpXP and ssrA-tagged proteins. SspB also 
stimulated Vtnax by about 25%. Moreover, 
SspB stimulated degradation over many en- 
zyme turnovers, did not stimulate degrada- 
tion of other ClpXP substrates (MuA and A 
O), and did not stimulate ClpAP, which 
also recognizes and degrades GFP-ssrA 
( 7 ) .  Thus, SspB enhances substrate recog- 
nition of ssrA-tagged substrates by the 
ClpX ATPase in a highly specific manner. 

SspB bound specifically to ssrA-tagged 
proteins (21) (Fig. 2). SspB and GFP-ssrA 
coeluted from a Superose 12 column (Fig. 
2A). whereas SspB and untagged GFP eluted 
as distinct peaks (Fig. 2B). Likewise, the 
ssrA-tagged NH,-terminal domain of A re-
pressor (h-cl-N-ssrA) was bound by SspB 
(Fig. 2C). Mutagenesis of the ssrA tag re- 
vealed that residues critical for SspB binding 
were distinct from those recognized by ClpX. 
Mutations in the YALAA portion of the tag 
did not prevent SspB binding (Fig. 2, D to F) 
but severely reduced degradation by ClpXP (8. 
12). By contrast, the Asn3-.Ala (N3A) muta- 
tion in the AATTDEN segment of the tag oblit-
erated binding of SspB (Fig. 3A) and eliminat- 
ed SspB stimulation of ClpXP degradation 
without affecting unstimulated degradation 
(Fig. 3B). Thus, Asn' in the ssrA tag IS  a 
cardinal determinant of SspB recognition. and 
binding of SspB to the peptide tag is critical for 
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Fig. 1. SspB stimulates CLpXP 
degradation of GFP-ssrA. (A) A 
ribosome-associated factor stim-
ulates proteolysis of 0.96 pM 
GFP-ssrA by 0.1 pM ClpX, and 
0.1 pM CIpP14' (B) MonoQ chro-
matography of SspB. (Inset) SDS-
PAGE of fractions 14 to 17. (C) 
Effect of SspB on GFP-ssrA deg-
radation. Rates were determined 
as described (9) in the absence 
(K, = 1.8 t 0.34 pM, V,,, = 
0.96 + 0.06 min-') or presence 
of 0.24 p M  SspB (K, = 0.40 + 
0.10 pM, V,,, = 1.44 t 0.07 
min-I). Reactions contained 5 
mM ATP, 0.3 p M  ClpX,, and 0.8 
PM ClpP,,. 
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stimulation of degradation. We conclude that 
SspB recognizes determinantsin the AANDEN 
portion of the ssrA tag, binding adjacent to the 
region recognized by ClpX. 

SspB stimulated degradation of ssrA-
tagged proteins in vivo. Pulse-chase exper-
iments were used to determine the rate of 
degradation of an ssrA-tagged substrate in 
isogenic sspB+ and sspB- strains. These 
cells carried the wild-type clpX allele but 
were clpA- to allow degradation by ClpXP 
to be specifically measured (22). Synthesis 
of a tagging substrate (A-cI-N) was induced 
from a gene with a strong transcriptional 
terminator before a stop codon; translation 
of this mRNA results in efficient addition 
of the ssrA tag to generate A-cI-N-ssrA (23, 
24). In sspB+ cells, A-cI-N-ssrA was de-
graded with a half-life of -0.5 min (Fig. 4, 
A and C), whereas in sspB-defective cells 
its half-life was about 5 min. Over the short 
time-course of these experiments, no appre-
ciable degradation was observed in the ab-
sence of ClpX in either sspB+ or sspB-
cells (Fig. 4B) (25). 

Our results demonstrate that SspB binds 
to ssrA-tagged proteins and increases the 
efficiency with which they are recog-
nized and degraded by ClpXP in vitro and 
in vivo. Moreover, the ssrA tag contains 
distinct sequence determinants important 
for recognition by SspB and by ClpX. The 
existence of factors, like SspB, helps ex-
plain how individual members of the Clpl 
HsplOO family can efficiently recognize 
substrates with substantially different pep-

SspB GFP-ssrA-N3A 

- Faction number 

GFP-ssrA-N3A 
/+ SspB 

GFP-sstA-N3A'GFP-ssrAIT----t \ ,OFP-ssrA+ SspB 

Fraction number Fraction number Fraction number Time (min) 

GFP Acl M ~ H S  Fig. 3. Asn3 of the ssrA tag is critical for SspB
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N3A chromatograph independently in gel fil-
Fig. 2. Gel filtration of ~s~~ . s s r~ - t aggedprotein mixtures. (A to F) Elution profiles of SspB (solid tration. (B) SspB does not stimulate degrada-
line) and tagged or untagged GFP or A-cl-N substrates (dashed Line). Control experiments suggest tion of GFP-ssrA-N3A by CLpXP. Reactions 
that the unbound XLcl-N material in (C) and (D) may have lost the ssrA tag by proteolysis during contained 5 mM ATP, 0.48 pM GFP-ssrA or 
purification. Abbreviations for the amino acid residues are as follows: A, Ala; D, Asp; E, Glu; L, Leu; GFP-ssrA-N3A, 0.02 p M  ClpX,, 0.02 p M  
N, Asn; and Y, Tyr. CLpP14, and 0.48 pM SspB where indicated. 
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Fig. 4. SspB stimulates intracellular degradation of ssrA-tagged proteins. (A) Pulse-chase 
assays of degradation of Acl-N-ssrA in sspBC and sspB- strains in cells Lacking clpA. A-cl-N- 
ssrA is indicated by the arrow and asterisks. (B) Experiment identical to that in (A), except that 
the strain was clpA+ and clpX-. (C)  Quantification of a pulse-chase experiment similar to that 
in (A). 

tide-targeting sequences. The observation 
that SspB stimulates degradation by ClpXP 
but not ClpAP also reconciles the facts that 
ClpXP mediates most intracellular deg- 
radation of ssrA-tagged proteins, but both 
enzymes degrade these substrates with 
similar efficiencies in vitro (12). Overall, 
SspB functions as a specificity-enhancing 
factor in two ways: by preferentially stim- 
ulating degradation of ssrA-tagged pro- 
teins, and directing this specific class of 
substrates to ClpXP but not to other pro- 
tease complexes. 

SspB is encoded in an operon whose 
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