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The Drosophila retina is patterned by a morphogenetic wave driven by the 
Hedgehog signaling protein. Hedgehog, secreted by the first neurons, induces 
neuronal differentiation and hedgehog expression in nearby uncommitted cells, 
thereby propagating the wave. Evidence is presented here that the zebrafish 
Hedgehog homolog, Sonic Hedgehog, is also expressed in the first retinal 
neurons, and that Sonic Hedgehog drives a wave of neurogenesis across the 
retina, strikingly similar to the wave in Drosophila. The conservation of this 
patterning mechanism is unexpected, given the highly divergent structures of 
vertebrate and invertebrate eyes, and supports a common evolutionary origin 
of the animal visual system. 

The vertebrate neural retina develops from a 
layer of pseudostratified epithelium lining the 
inside of the optic cup, whereas the pigment- 
ed retina (RPE) develops from cells on the 
outside of the cup. The ganglion cell layer 
(GCL) forms part of the neural retina, and 
ganglion cells are the first neurons to be born 
in the retina. Neurogenesis proceeds in a 
wave from the central to the peripheral retina 
(I). Sonic Hedgehog (Shh) is expressed in the 
GCL and RPE and directs proliferation and 
differentiation of several late arising cell 
types, such as photoreceptors and glia (2-5). 
Here we show that at earlier stages, Hedge- 
hog (Hh) signaling drives a wave of shh 
expression and neurogenesis across the GCL. 

To investigate early functions of Shh in 
retinal neurogenesis, we constructed a ze-
brafish strain harboring a green fluorescent 
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protein (GFP) transgene under the control of 
the Shh promoter (6). Two ShhGFP transfor- 
mant lines faithfully recapitulate many as-
pects of shh RNA expression (7, 8). In con- 
trast to the observations of Stenkamp et al. 
(9,we detect zebrafish shh RNA and Shh- 
GFP not only in the WE, but also in the GCL 
(Fig. 1, A and E) (a), which is in agreement 
with the data from other vertebrates (2-4). 
ShhGFP and shh RNA expression is activated 
at 28 to 30 hours in a patch of cells ventral 
and nasal to the optic disc (Fig. 1B) (8). 
These cells are the first retinal ganglion cells 
(RGCs) to differentiate and express the RGC 
marker Zn5 (Fig. 1B) (9). ShhGFP and shh 
RNA expression then spreads from this point, 
together with Zn5 immunoreactivity, and fills 
the central retina by 52 hours (Fig. 1, A to E) 
(8). Only a subset of the RGCs express Shh- 
GFP (Fig. 11). 

To determine whether shh expression 
might be regulated by Shh itself, we exam- 
ined ShhGFP expression in sonic you (syu) 
mutants, in which the zebrafish sonic hedge- 
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hog gene is disrupted (10). In syu mutants, 
ShhGFP expression is initiated in the first 
RGCs, but then fails to spread further (Fig. 1, 
F to H). This is very similar to the Drosophila 
eye, where Hh signaling is required for the 
spread, but not the induction, of the first 
Hh-expressing neurons, which instead re-
quires decapentaplegic signaling (11). In 
contrast, Zn5 immunoreactivity and RGC dif- 
ferentiation do spread in syu mutants, but this 
spread is retarded (Fig. 1, G and H), and the 
RGCs are disorganized and reduced in num- 
ber (Fig. 1, I and J). The reduction of RGCs 
correlates well with the observation that the 
optic nerve is thinner in syu mutants (7). In 
addition, the layering of syu mutant eyes is 
not as pronounced as in wild-type eyes (Fig. 
1, K and L). At 76 hours, there are many 
apoptotic cells in syu eyes (Fig. 1L) (7), but 
elevated cell death is not observed until after 
50 hours (7), indicating that cell death is not 
responsible for the reduced ShhGFP expres- 
sion, which is already evident well before this 
(F1g. 1G). 

Since Shh is necessary for its own expres- 
sion, we asked whether it might also be suf- 
ficient to induce itself. We injected a shh 
cDNA under the control of a heat shock- 
inducible promoter (12) into syu RNA null 
mutants (13) carrying ShhGFP. DNA injec- 
tion into zebrafish embryos leads to mosaic 
expression of the transgene (14). We activat- 
ed expression by heat shock at 28 hours and 
examined the effect on ShhGFP at 52 hours. 
Patches of cells expressing shh RNA were 
found to induce ShhGFP expression in the 
GCL (Fig. 2A), indicating that Shh is suffi- 
cient to activate its own expression. Consis- 
tent with this observation, wild-type cells 
transplanted into syu eyes are able nonauto- 
nomously to induce ShhGFP expression in 
mutant cells located in the vicinity (Fig. 2B). 
It is interesting that wild-type clones do not 
rescue ShhGFP expression if they do not 
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Fig. 1. The shh gene is expressed in a wave in the neural retina. (A to D and F to J) Confocal 
micrographs of eyes showing ShhCFP expression (green) and Zn5 staining (red) (32). (E) shh RNA 
(33). ( K  and 1) Methylene blue-stained sections (33). Anterior is to the left and ventral is down in 
(B) to (D) and (F) to (J), which are side views of eyes. The broken line demarcates the eye outline. 
Anterior is up in (A), (E), (K), and (L), which are ventral views of eyes. (A, D, E, H, I, and J) 52 hours; 
(B and F) 30 hours; (C and C) 40 hours; and (K and L) 76 hours. (A to E, I, and K) Wild type; (F to 
H, J, and L) syu mutant (73). (1 and J) Confocal sections through the CCL, taken at five times the 
magnification of the other panels. Arrowheads point to the CCL. 

Fig. 2. Shh induces its own expression in the CCL. (A to C) Confocal micrographs of syu; shhCFP 
eyes, anterior to the left, ventral to the bottom. The broken line demarcates the eye outline. (A) 
shh RNA (red) driven by hs-shh (72) induces ShhCFP-expression (green) in the CCL of syu mutants. 
hs-shh was injected into the RNA null allele of syu (73). (B) Wild-type shhCFP cells labeled with 
rhodamine (red) and transplanted into syu; shhCFP embryos (34) induce ShhGFP-expression (green) 
in mutant cells in the vicinity (arrowheads). (C) Wild-type shhCFP cells (red) do not express ShhCFP 
(green), nor do they rescue ShhCFP-expression in mutant cells if they do not include the point of 
origin of the neurogenic wave (arrowhead). 

include the region where the wave of neuro- 
genesis starts (Fig. 2C), suggesting that Shh 
signaling in this area is a prerequisite for the 
subsequent spread. 

These results show that Shh is both neces- 
sary and sufficient to control a wave of its own 
expression that sweeps through the GCL (15). 
This is strikingly similar to the function of Hh 
in controlling the morphogenetic furrow of the 
Drosophila eye (16-18). In contrast to Dro- 
sophila, neurogenesis per se is only partially 
dependent on Shh in the zebrafish retina. As 
several other Hh genes are known in the ze- 
brafish (19, 20), it is possible that one of these 

might be responsible for the Shh-independent 
neurogenesis. Consistent with this possibility, 
we find that tigg~winkle hedgehog (twhh) is 
expressed in the GCL, and that this expression 
is detectable, though reduced, in syu eyes (Fig. 
3, A and B). To fiuther address this issue, we 
treated embryos with cyclopamine, which in- 
hibits signaling by both Shh and other Hh fam- 
ily members (21-23). Treatment of embryos 
with cyclopamine from 26 to 52 hours blocks 
both the spread of ShhGFP and the spread of 
neurogenesis (Fig. 3C), indicating that several 
Hh genes cooperate to drive the wave of neu- 
rogenesis in the zebrafish retina. 

Fig. 3. Contribution of twhh to retinal neuro- 
genesis. (A and B) twhh RNA (33), ventral view 
of eyes, anterior to the top. (A) Wild type; ( B )  
syu mutant. The arrowheads point to twhh 
expression in the CCL (C and D) Confocal 
micrographs of cyclopamine-treated eyes, Shh- 
CFP (green), zn5 (red) (32), anterior to the left, 
ventral to the bottom. The broken line demar- 
cates the eye outline. (C) Treatment with cy- 
clopamine from 26 to 52 hours (73) blocks both 
the spread of ShhCFP-expression and neuro- 
genesis. (D) Treatment with cyclopamine from 
30 to 52 hours blocks the spread of ShhCFP and 
neurogenesis after it fills the ventral retina. 

In Drosophila, Hh is continuously re- 
quired for firrow progression (1 7). To deter- 
mine whether the same might be true in the 
zebrafish eye, we treated embryos with cy- 
clopamine at later time points. Treatment of 
embryos from 30 to 52 hours results in eyes 
in which the spread of ShhGFP and neuro- 
genesis is blocked after it fills a small domain 
in the ventral anterior retina (Fig. 3D), reveal- 
ing a continuous requirement for Hh signal- 
ing for the neurogenic wave in the zebrafish 
retina. 

In the Drosophila retina, activation of the 
RasIMAP-kinase pathway spreads together 
with the morphogenetic furrow (24), and sig- 
naling through the Ras pathway is necessary 
for retinal neurogenesis, and depends on 
Hedgehog activity (25). To explore this sce- 
nario in the zebrafish retina, we stained eyes 
with an antibody against the activated form of 
mitogen-activated protein kinase (dp-ERK) 
(24). We find that dp-ERK is detectable at 32 
hours in the same domain where ShhGFP 
expression is first activated, and then spreads 
from this point parallel to ShhGFP expression 
and neurogenesis (Fig. 4, A to C), as in 
Drosophila. The spread of dp-ERK occurs in 
syu eyes, although its domain is smaller (Fig. 
4D), whereas it is blocked in embryos treated 
with cyclopamine from 26 to 52 hours (Fig. 
4E). 

Analysis of the Pax61Eyeless gene has 
indicated that the mechanism of eye induc- 
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Fig. 4. Activation of ERK spreads in a wave in 
the neural retina. (A to E) Confocal micro- 
graphs of eyes stained for dp-ERK (red) (32), 
anterior to the Left, ventral to the bottom. The 
broken Line demarcates the eye outline. (A) 32 
hours; (B) 40 hours; and (C to E) 52 hours. (A to 
C) Wild type. (D) The wave of dp-ERK activa- 
tion occurs in syu mutants, although the do- 
main is reduced. (E) The wave of dp-ERK acti- 

vation is blocked in embryos treated with cyclopamine from 26 to 52 hours (73). 

tion may be conserved across the animal king- 
dom (26). However, the dramatic variation o f  
eye structure not only between vertebrates and 
invertebrates, but also within the vertebrate lin- 
eage, has suggested that events downstream of 
eye induction may have evolved independently. 
Our results now show that the role played by 
Hh signaling in retinal differentiation is con- 
served between flies and fish. This suggests that 
Hh was already used to pattern a primordial eye 
structure before vertebrate and invertebrate lin- 
eages diverged, and thus supports a common 
evolutionary origin o f  the animal eye. 
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