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How Snapping Shrimp Snap: 

Through Cavitating Bubbles 


Michel Versluis,' Barbara Schmit~,~Anna von der Heydt,'s3 
Detlef Lohsel* 

The snapping shrimp (Alpheus heterochaelis) produces a loud snapping sound 
by an extremely rapid closure of its snapper claw. One of the effects of the 
snapping is t o  stun or kil l prey animals. During the rapid snapper claw closure, 
a high-velocity water jet is emitted from the claw with a speed exceeding 
cavitation conditions. Hydrophone measurements in  conjunction wi th  time- 
controlled high-speed imaging of the claw closure demonstrate that the sound 
is emitted at  the cavitation bubble collapse and not on claw closure. A model 
for the bubble dynamics based on a Rayleigh-Plesset-type equation quantita- 
tively accounts for the time dependence of the bubble radius and for the 
emitted sound. 

The oceans may be deep, but they are not at 
all ~ u i e t  ( I ) .  Sounds in the oceans include 
thosk of wabes; rain, hail, and snow; and the 
biological sounds of fish, dolphins, whales, 
and snapping shrimp. The latter, in particular, 
produce the dominant level of ambient noise 
in (sub)tropical shallow waters throughout 
the world (2). These shrimp usually occur in 
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such large numbers that there is a permanent 
crackling background noise. similar to the 
sound orburning dry twigs (3).The snapping 
sound can be heard day and night ( 4 ) . with 
source levels as high as 190 (5)to 2 10 dB (6 ) 
(peak to peak) referenced to 1 kPa at a 
distance of 1 m. This severely limits the use 
of underwater acoustics for active and pas- 
sive sonar, both in scientific and naval a&l- . . 

The frequency 'pectrum of a snap is 
broad, ranging from tens of hertz to >200 
kHz ( 5 ) .  The noise of snaoninn shrimn is ~, 	 l .  L 

therefore also used as a source for creating 
pictorial images of objects in the ocean 
through ensonification ( 7  ) .  

A snapping shrimp of the species Alphr~rs 
heferochaelis ( -5 .5  cm in size) is shown in 
Fig. 1A. The shrimp produces the snapping 
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sound by an extremely rapid closure of its 
large snapper claw, which may reach 2.8 cm 
in length, about half of its body size. The 
claw (Fig. 1B) has a protruding plunger on 
the dactyl and a matching socket in the pro- 
pus. Before snapping, the claw is cocked 
open by co-contraction of an opener and a 
closer muscle, building up tension until a 
second closer muscle contracts (8). This re- 
sults in an extremely rapid closure of the claw 
(9). A high-velocity water jet (10, 11) is 
formed when the dactyl plunger is driven into 
the propus socket, displacing water. The wa- 
ter jet is received and analyzed by sensory 
hairs on the snapper claw of conspecific 
snapping shrimp. Therefore, the snapping 
plays an important role in intraspecific com- 
munication (12). In addition. it is used to 

% , 

defend a shelter or territory and to stun and 
even kill prey animals (10, 13). 

The loud snap has been attributed to the 
mechanical contact made when the dactyl and 

the propus edges hit each other as the claw 
closes (6, 14). Here, we show that the sound 
originates solely from the collapse of a cav- 
itation bubble that is generated by the fast 
water jet resulting from the rapid claw clo- 
sure. The water jet velocity is so high that the 
corresponding pressure drops below the va- 
por pressure of water. Seawater contains tiny 
air bubbles, called nuclei (15). Such a micro- 
bubble, if located between the dactyl and the 
propus of the snapper claw, will grow in size 
when it is entrained in the region of low 
pressure generated through the water jet. 
Subsequently, it collapses violently when the 
pressure rises again. 

The experiments were performed with 
seven individuals of A. heterochaelis. Each 
shrimp was positioned on a small textile plat- 
form in a seawater aquarium and tethered to a 
vertical holder by a plastic nut glued to its 
back. The snap was evoked by gently touch- 
ing the freely movable snapper claw with a 

Fig. 1. (A) Alpheus 
heterochaelis, one of 
the largest snapping 
shrimp. The large 
snapper claw may be 
either on the right or 
the left in both sexes. 
Modified after (30). 
(B) Close-up of the 
sGpper claw in its 
cocked position. The 
claw is made transpar- 
ent by the use of 
methyl salicylate. The 
claw has a protruding 
plunger on the 
dactyl (d) and a matching socket (s) in the immobile propus (p) (photograph by B. Seibel). During 
the extremely rapid closure of the snapper claw, a high-velocity water jet is formed when the 
plunger displaces the water from the propus socket. 

soft paintbrush. A hydrophone with an upper 
frequency limit of 100 kHz was positioned at 
a small distance from the shrimp. Simulta- 
neously, high-speed images were recorded 
with a digital monochrome video camera at a 
frame rate of 40,500 frames per second (fps) 
with a resolution of 64 by 64 pixels. The 
image acquisition was triggered by the sound 
of the snap. A typical hydrophone signal is 
shown in Fig. 2A (16). The main peak at time 
t = 0 is followed by a very broadband signal, 
which is partly due to the reflections of the 
main signal at the aquarium walls located at a 
minimum distance of 15 cm. Therefore, the 
first reflections start after 200 ps. The hydro- 
phone signal shows a precursor signal before 
the main peak, similar to that previously ob- 
served in recordings of the smaller Synal- 
pheus paraneomeris snapping shrimp (5). 

A sequence of high-speed images, showing 
the snapper claw from the top, is shown in Fig. 
2B. The snapper claw is in its cocked position 
in frame 1. Full closure of the claw is achieved 
at frame 2 (600 ps later), followed by bubble 
growth (within 375 ps, although the onset of 
bubble growth is not visible in this view) and 
bubble collapse (in <300 ps) at t = 0 in frame 
3. The images show that the cavitation bubble, 
which was recorded in each of our 108 exper- 
iments, is nonspherical and elongated in the 
direction of the water jet. The bubble grows to 
a maximum equivalent radius of 3.5 mrn on 
average. At collapse ( h e  3), the transparent 
single cavitation bubble breaks apart, and an 
opaque cloud of small bubbles is formed, which 
finally dissolves. 

The temporal correlation between the 
snapping sound and the bubble dynamics was 
determined from these high-speed video re- 
cordings. The hydrophone signal and the ex- 
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posure timing of the high-speed camera 
were measured simultaneously, referenced 
to a trigger signal. The main peak of the 
snapping sound and the collapse of the 
cavitation bubble always coincide. An anal- 
ysis of 19 different experiments showed 
that the temporal correlation of sound and 
bubble collapse is achieved with a standard 
deviation of 0.86 frames, i.e., accurate to 
within 25 ps. The claw is closed in frame 2 
of Fig. 2, 650 p s  (or 26 frames at 40,500 
fps) before bubble collapse. 

The angular velocity of dactyl rotation 
was determined from the position of the tips 
of the dactyl and propus in relation to the 
position of the pivot point. Claw closure be- 
gins with moderate angular velocities (on the 
order of 100 radls) for large opening angles. 
In the final stage of claw closure, the dactyl 
rotates with an impressive 3500 radls. Angu- 
lar velocities of this order were previously 
measured with a thin laser-coupled optical 
fiber glued to the distal tip of the dactyl (9). 

The occurrence of cavitation bubbles ex- 
plains why the snaps are harmful to prey 
animals: It is cavitation damage, known to 
damage ship propellers and centrifugal 
pumps. The destructive force of a collapsing 
cavitation bubble can be seen during inter- 
specific encounters. Small prey (e.g., worms, 
goby fish, or other shrimp) can be stunned or 
killed (13), and small crabs (Eul?;panopeus 
depresstu) are injured by the snap of snap- 
ping shrimp (1 7). The interaction distance, 
defined as the distance from the tip of the 
snapper claw to the nearest body part of the 
opponent measured along the long axis of the 
snapper claw, was reported to be 3 mm on 
average. In our experiments, it is shown that 
the cavitation bubble collapses 3 mm in front 
of the tip of the snapper claw (Fig. 2). In 
intraspecific encounters, the snap does not 
injure the opponent; the interaction distance 

Time (ms) 

Fig. 3. The calculated bubble radius R(t)  as a 
function of t ime (solid line). The temporal 
change of the pressure field P(t)  that was 
modeled for this calculation is also given 
(dashed line). The model parameters (Pa = 
2.2 X l o 5  Pa and u = 360 ks) were fitted to  
match the theoretical radius with the experi- 
mentally determined equivalent bubble radius 
of the ellipsoidal cavitation bubble (indicated 
by solid circles). 

is 9 mm on average (IZ), far enough to avoid 
implosion danger. 

The velocity of the water jet was estimat- 
ed from the speed of the cavitation bubble. 
High-speed video close-ups of the cavitation 
bubble indicate velocities of the front end of 
the bubble as high as 32 m/s, whereas the 
bubble expands longitudinally with a speed 
of 9 mls. This indicates a flow with a speed 
v,,,, on the order of 25 m/s. This high water 
jet velocity implies a pressure drop from the 
ambient pressure P, = lo5 Pa, which can, in 
principle, be modeled through Bemoulli's 
law. However, there is limited information on 
the actual temporal and spatial shape of the 
velocity field and, consequently, also on the 
pressure field. Nevertheless, the unsteady 
term in Bernoulli's law, pa,+ (where p rep-
resents the density of water, d, is the partial 
derivative with respect to time, and 6 is the 
velocity potential), can be estimated by di- 
mensional arguments and is smaller than or, 
at most, of the same order of magnitude as the 
kinetic energy term. Therefore, we estimate 
the magnitude of the pressure drop as Pa -
( l I 2 ) p ~ ~ , ~ .With the above water jet velocity, 
P, - 3 X lo5 Pa. Moreover, we assume a 
Gaussian pressure distribution in time 

P( t )  = Po- Paexp I 
where o represents the width of the Gaussian 
pulse. As the pressure P(t) drops below the 
vapor pressure of water (Pvap = 2 X 1O3 Pa), 
cavitation occurs. 

The bubble that arises at the tip of the 

-1.OO -0.75 -0.50 -0.25 0.00 

Time (ms) 

Fig. 4. (A) The calculated sound pressure P,(r, 
t ) f o r r = 4 c m w i t h P a =  3 .0X 105Paandu=  
210 ks. The main peak at t = 0 (P, = 2 x lo8  
Pa) is drawn off-scale t o  emphasize the precur- 
sor signal. (0) An enlarged view of the experi- 
mental sound pressure curve of Fig. 2. 

snapper claw is not spherical. Modeling the 
dynamics of nonspherical bubbles is non-
trivial (18), requiring that all parameters, 
such as the water jet velocity and width and 
the size and shape of the bubble nucleus, be 
precisely known. However, to get at least a 
semiquantitative statement, we can assume a 
spherical bubble, whose dynamics is well 
described by Rayleigh-Plesset-type equa-
tions (15). 

Typical bubble nuclei in seawater are be- 
tween 1 and 50 p m  in radius (15, 19). We 
assume a nucleus initially filled with air and 
of the initial radius R, = 10 pm under normal 
conditions. The results hardly depend on the 
choice of R,. The response of the bubble 
nucleus on the pressure reduction (Eq. 1 )  is 
described by the (modified) Keller equation 
(20),which is of Rayleigh-Plesset type 

R ti 
[p(R, t )  + P,,, - P( t ) ]  + pc - dt - p(R.  t )  

(2 ' )  
The parameters for an air bubble in water are 
the viscosity of water v, its density p, the 
speed of sound c, and the surface tension of 
the air-water system S. The terms proportion- 
al to Rlc take into account the effects of liquid 
compressibility. p(R, t) is the pressure inside 
the bubble and can be modeled by a van der 
Waals equation of state. From an estimation 
of the Peclet number, we find that we can 
assume adiabatic behavior (15, 21, 22). and 
because the amount of water vapor inside the 
bubble is diffusion-controlled (23), we cou- 
ple an additional equation for the water vapor 
concentration inside the bubble to the Keller 
equation (24). For given bubble dynamics 
R(t), the emitted sound wave at distance t .  

from the bubble simply follows from (2.5. 26 ) 

In Fig. 3, the modeled pressure reduction (Eq. 
1) and the calculated bubble radius resulting 
from Eq. 2 are plotted. As the pressure decreas- 
es, the bubble begins to grow up to a maximum 
radius of -3.6 rnrn. There is a time delay 
through inertia: At maximum bubble radius, the 
pressure has already risen again to the ambient 
pressure P,. Subsequently, the bubble collapses 
rapidly within -300 ps. After the bubble col- 
lapse, the numerical solution of Eq. 2 shows 
some afterbounces. These are not observed in 
the experiment, as the bubble is destroyed upon 
collapse. Indeed, if we perform a linear stability 
analysis of the spherical bubble (22. 27) we 
find exactly the same feature at bubble collapse: 
The bubble is destroyed through a Rayleigh- 
Taylor-type instability. 
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The model parameters P, and u were fitted 
to match the theoretical radius with the exper- 
imentally determined radius 
of the ellipsoidal cavitation bubble (solid circles 
in ~ i ~ ,  the3). With these model 

sound pressure curve (from Eq. 3, is 
in good agreement with the expeTInIenta1 sound 
signal (Fig. 4). The main acoustical signal is 
preceded by a small sinusoidal precursor, 
caused by the bubble expansion and ConWac- 
tion. At collapse (t = o), the main acoustical 
signal is emitted. The narrow peaks in the cal- 
culated sound signal after the main pressure 
peak are produced by the aforementioned after- 
bounces and should not be considered here, as 
the bubble is destroyed on collapse,Quantita-
tively, the model ~verestimates the measured 
sound pressure, especially the maximum pres- 
sure, for three reasons: (i) nenonspherical 

of the reduces the strength 
the collapse and therefore the intensity of the 
emitted sound, (ii) thermal damping effects (28) 
are not included in the model, and (iii) on the 
experimental side, the limited bandwidth of the 
hydrophone underestimates the peak value of 
the sound pressure. 

The calculated width of the main acousti- 
cal peak for the modeled spherical bubble is 
very small, on the order of 100 ps. This Mike 
pulse corresponds to a white noise spectrum, 
consistent with the wide frequency range of 
the sound of the snapping shrimp. A more 
quantitative comparison of the theoretical and 
experimental spectrum must include the as- 
phericity of the collapse, the acoustical emis- 
sion of the bubble fragments, and the sound 
reflections from the walls into the model. 

The variation in claw size, claw shape, 
cocking duration, applied closer muscle 
force, and claw closure speeds of snapping 
shrimp all lead to slightly different sound 
signals and have different water jet charac- 
teristics. By adjusting the parameters P, and 
u in our model, we are able to account for the 
variety of precursor signals measured in our 
experiments (29). 
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Detecting and Measuring 

Cotranslational Protein 


Degradation in Vivo 

Glenn C. Turner and Alexander Varshavsky* 

Nascent polypeptides emerging from the ribosome and not yet folded may at 
least transiently present degradation signals similar to those recognized by the 
ubiquitin system in misfolded proteins. The ubiquitin sandwich technique was 
used to detect and measure cotranslational protein degradation in living cells. 
More than 50 percent of nascent protein molecules bearing an amino-terminal 
degradation signal can be degraded cotranslationally, never reaching their 
mature size before their destruction by processive proteolysis. Thus, the folding 
of nascent proteins, including abnormal ones, may be in kinetic competition 
with pathways that target these proteins for degradation cotranslationally. 

Nascent polypeptides emerging from the ri- 
bosome may, in the process of folding, 
present hydrophobic patches and other struc- 
tural features that serve as degradation sig- 
nals similar to those recognized by the ubiq- 
uitin (Ub) system in misfolded or otherwise 
damaged proteins (1).Whether a substantial 
fraction of nascent polypeptides is cotransla- 
tionally degraded is a long-standing question. 

The Ub sandwich technique was devel-
oped to detect cotranslational protein degra- 
dation by measuring the steady-state ratio of 
two reporter proteins whose relative abun- 
dance is established cotranslationally. The 
technique requires that the polypeptide to be 
examined for cotranslational degradation, 
termed B, be sandwiched between two stable 
reporter domains, A and C, in a linear fusion 
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protein (Fig. 1A). The three polypeptides are 
connected by Ub moieties, creating an AUb-
BUb-CUb fusion protein. Ub-specific pro- 
cessing proteases (UBPs) cotranslationally 
cleave such linear Ub fusions at the C-termi- 
nal residue of Ub (2-4), generating three 
independent polypeptides, AUb, BUb, and 
CUb (5). UBP-mediated cleavage establishes 
a kinetic competition between two mutually 
exclusive events during the synthesis of 
AUb-BUb-Cub: cotranslational UBP cleav- 
age at the BUb-CUb junction to release the 
long-lived Cub module or, alternatively, co- 
translational degradation of the entire BUb-
CUb nascent chain by the proteasome (6) 
(Fig. 1B). In the latter case, the processivity 
of proteasome-mediated degradation results 
in the destruction of the Ub moiety between 
B and C before it can be recognized by UBPs. 
The in levels the 
ule relative to levels of AUb, referred to as 
the CIA ratio, reflects the cotranslational deg- 
radation of domain B (Fig. 1B). 
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