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Graphical Evolution of the 
Arnold Web: From Order 

to Chaos 
Claude Froeschle, Massimiliano Cuuo,* Elena Lega 

We represent graphically the evolution of the set of resonances of a quasi- 
integrable dynamical system, the so-called Arnold web, whose structure is 
crucial for the stability properties of the system. The basis of our representation 
is the use of an original numerical method, whose definition is directly related 
t o  the dynamics of orbits, and the careful choice of a model system. We also 
show the transition from the Nekhoroshev stability regime t o  the Chirikov 
diffusive one, which is a generic nontrivial phenomenon occurring in  many 
physical processes, such as slow chaotic transport in  the asteroid belt and 
beam-beam interaction. 

The long-term behavior of a mechanical 
system is in general unpredictable. In the 
frame-work of Hamiltonian systems, an ex- 
ception is systems that are integrable in the 
sense of Liouville-Arnold. In these sys-
tems, the phase space is completely filled 
with invariant tori, and on each invariant 
torus all motions are quasi-periodic with 
the same frequencies w,, . . . , w,, where n 
is the number of degrees of freedom. Al- 
though Liouville-Arnold's integrability is a 
rare property, many mechanical systems of 
great interest are integrable, such as the 
Euler-Poinsot rigid body, the two-body 
problem, and the Birkhoff normal forms 
around elliptic equilibria truncated at suit- 
able order. 

Many interesting problems of physics, 
such as the stability of planets and aster- 
oids, of planetary spin-axis, and of the 
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beam-beam interaction, among others, can 
be represented as small perturbations of 
integrable systems. In general, a small per- 
turbation breaks the integrability of the sys- 
tem. Consequently, the behavior of the so- 
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lutions can become complex and unpredict- 
able to such an extent that it is generically 
called chaotic. Small perturbations of inte- 
grable systems transform them into quasi- 
integrable systems, and their study is the 
subject of Hamiltonian perturbation theory. 
One of the most celebrated results of Ham- 
iltonian perturbation theory is the KAM 
theorem (1-3), which applies if the pertur- 
bation is smooth ( 4 )  and suitably small (5) 
and if the integrable approximation of the 
system satisfies a nondegeneracy property 
(1 ,  3, 6-9). The KAM theorem establishes 
that for the majority of initial conditions, 
which we call the regularity set, the features of 
the motions of the system are essentially those 
of the integrable approximation: In the regular- 
ity set, motions occur on invariant tori, and on 
the same toms all motions are quasi-periodic 
with the same frequencies. More precisely, the 
KAM theorem proves that for any invariant 
toms of the original system with nonresonant 
frequencies [more precisely, Diophantine ( lo)] .  
there exists an invariant toms in the regularity 

Fig. 1. Variation of the FLI for 
r = 0.01 as a function of the 
integration time for a chaotic or- 
bit (continuous line), a nonreso- 
nant one (dashed line), and a 
resonant one (dotted line). The 
three kinds of orbits are clearly 
distinguished already for t = 
300. 
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set that is a small deformation of the unper- 
turbed one. Conversely, nothing is predicted by 
KAM theory for initial conditions in the neigh- 
borhood of the set made of invariant unuer- 

= +,(0) + 12t, +,(t) = +3(0) + t  rotate with cies o, = I , ,  w,  = I,, w ,  = 1 .  Conversely, 
constant angular velocity. Therefore, each for any small E different from zero, H, is not 
couple of actions I , ,  I, characterizes an in- expected to be integrable. However, we ex- 
variant torus T3,  and all motions on the con- pect that the KAM theorem applies, and con- 
sidered torus are quasi-periodic with frequen- sequently the phase space is filled by a large w e d  tori with frequencies that satisfy a ;so- 

nance condition 8, kiwi = 0 with some integers 
(k,,  . . . , k,,) E Zn\O, withii a suitable accuracy 
that increases with the order (1 1) 8,1 k, 1 . There- 
fore, in the neighborhood of such a set, which is 
called the Arnold web, the motions of the sys- 
tem can exhibit chaotic features. 

The topology of the Arnold web is peculiar. 
To describe it, we resort to the frequency space 
w , ,  . . . , on. In this space, the Arnold web 
projects on the frequencies satisfying 8, kiwi = 
0 with a nei hborhood that decreases with 
the order 8, r' k,l . Therefore, it is open and 
dense, and if the perturbation is suitably 
small, it has a small relative measure. This 
structure was explained analytically in ( 3 )  
but only for very restrictive conditions (es- 
pecially on the magnitude of the perturba- 
tion). In addition, the rigorous proof of the 
existence of instability and irregularity in 
the Arnold web is a delicate, not complete- 
ly solved problem. For physically interest- 
ing systems, recent successful approaches 
are based on numerical investigations (12) .  
In different fields of physics, the question 
of the stability of quasi-integrable Hamil- 
tonian systems in the sense of the KAM 
theorem is important, because for the ma- 
jority of initial conditions it provides sta- 
bility for infinite times and describes mo- 
tions. In beam-beam interactions (13) ,  there 
is the problem of having to remain as close 
as possible to given computed orbits in 
order to indeed have interaction between 
particles. Within the old and not-yet-solved 
problem of the stability of the solar system, 
it is not completely clear whether the orbits 
of some planets ( 1 4 )  and of a significant 
number of asteroids (15)  will change or not 
in an important way. Previous work has 
been based on numerical applications of the 
frequency-map analysis (16) .  Here we give 
a graphical representation of the Arnold 
web, obtained with a numerical test of reg- 
ularity of the solutions of the system, with 
a sharpness never seen before. 

We consider a system with the following 
Hamilton function 

Fig. 2. Evolution of the Arnold web for increasing values of the perturbation parameter. The lowest 
values of the FLI appear in black and they correspond to  the resonant islands of the Arnold web; 
the highest values appear in yellow and they correspond either to  chaotic motion rising at the 
crossing nodes of resonant lines or to  the presence of separatrix. The FLls of all the KAM tori have 
about the same value, and therefore they appear with the same purple color. The choice of the 
color scale is suited to  the value of the perturbation parameter and to  the integration time. (Left 
column) A large portion of the action plane. Top: E = 0.001, t = 1000; middle: E = 0.01, t = 
1000; bottom: E = 0.04, t = 1000. (Right column) Enlargement of the figures on the left obtained 
with a large integration time in order to  see smaller details. Top: E = 0.001, t = 4000; middle: E = 
0.01, t = 2000; bottom: E = 0.04, t = 2000. 

where I , ,  I,, I, E R and +,, +,, +, E S are 
canonically conjugated (17) ,  and E is a pa- 
rameter that the larger it is, the more per- 
turbed the problem becomes. The canonical 
equations of the integrable Hamiltonian H, 
are integrated: I , ,  I,, I, stay constant while 
the angles at time t  + , ( t )  = +, (0 )  + I, t, +,(t) 
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volume of invariant tori, surrounded by the 
Arnold web. Our goal is to detect numerically 
the structure of the Arnold web. The Arnold 
web can be represented in the two-dimen- 
sional plane I , ,  I,, where each point individ- 
uates in a universal way the frequency of an 
unperturbed torus. Moreover, all resonances 
k l o l  + k,o,  + k,o ,  = 0 are represented by 
straight lines k,I,  + k212+ k, = 0. Of course, 
the set of all resonances is dense on the action 
plane I , ,  I,. However, one can expect that 
irregular orbits surround each resonance line 
up to a distance that decreases as fi 
exp(-Xi I ki I ), and consequently the volume 
of the Arnold web is expected to be as small 
as fi. 

We now describe the expected phenom- 
enology of the motions with initial condi- 
tions in the Arnold web. Within resonances, 
both chaotic and regular motions can be 
observed. Regular resonant motions are to- 
pologically different from the regular non- 
resonant ones. These islands of regular res- 
onant orbits can be surrounded by chaotic 
zones. However, orbits with initial condi- 
tions in such chaotic regions do not diffuse 
in the action plane because of the Nekhoro- 
shev theorem (18, 19), which applies if E is 
small (20, 21) and some nondegeneracy 
condition is satisfied (in particular, satis- 
fied by the Hamiltonian in Eq. 1). By in- 
creasing E one reaches a threshold E, for 
which the global volume of resonances 
does not leave any place for invariant tori. 
In this case, the dynamics is no longer 
controlled by the Nekhoroshev theorem. To 
describe it, we use the Chirikov overlap- 
ping criterion (22), which allows the reso- 
nant chaotic solutions to go from one res- 
onance to the other, possibly giving rise to 
large-scale diffusion. As a global picture, 
all the action space seems to be constituted 
by a large-volume chaotic region with some 
robust resonant island in it. Actually, the 
numerical approaches, including the one 
we use, allow estimation of E ~ .  

To discriminate between chaotic and or- 
dered orbits, it is usual to compute the 
largest Lyapunov exponent. A faster indi- 
cator is the fast Lyapunov indicator, here- 
after called FLI (23, 24). Here, the new 
point is the use of the FLI to discriminate 
also between KAM tori and regular reso- 
nant motion, which is not possible with the 
Lyapunov exponents. Given a set of differ- 
ential equations 

under some regularity conditions (25), the 
Lyapunov exponents are computed by inte- 
grating the equations of motion and the 

a% 
variational equations 

is any n-dimensional vector. he largest 

Lyapunov exponent is defined in such a 
way that, unless C(0) belongs to some lower 
dimensional linear spaces, the quantity In 
IlC(t)lllt tends toward it for t going to infin- 
ity. If Eq. 2 is Hamiltonian and if the 
motion is regular, then the largest Lya- 
punov exponent is zero, otherwise its value 
is positive. The FLI is the value of In IlC(t)ll 
at fixed time t. This quantity, which can be 
easily computed with any set of coordi- 
nates, keeps trace of the topological differ- 
ences between resonant regular motion and 
KAM tori (Fig. 1). Instead, In IlC(t)lllt in the 
limit of infinite t goes to zero in both cases. 

In recent years, other tools of analysis 
have been introduced, such as the frequen- 
cy map analysis, the sup-map analysis, and 
the twist angle (12, 16, 26-29). We com- 
puted the FLI, using a leapfrog symplectic 
integrator, on a grid of 500 X 500 mesh of 
initial conditions regularly spaced in the 
action space (the choice of initial angles 
was +, = +, = +, = 0) with a fixed initial 
tangent vector [v,, = 1, v = 1, v , ~= 1,I? 
v+, = 0 . 5 ( f i -  I ) ,V+,~= 1,v+, = I] .  

In Fig. 2, top left, and the enlargement 
shown in Fig. 2, top right, the resonant lines 
are embedded in large zones filled with KAM 
tori. Because of the choice of the perturbation 
with a full Fourier spectrum (that is, all har- 
monics are present at order E), a large number 
of resonances are visible at small E (in prin- 
ciple, all resonances should appear just by 
increasing the integration time). For E = 0.0 1, 
the volume of invariant tori decreases and the 
chaotic regions become evident at the cross- 
ing of resonances, but the system is still in the 
Nekhoroshev regime (Fig. 2, middle left and 
right). For E = 0.04, the dynamical regime 
has changed (Fig. 2, bottom left and right). 
The majority of invariant tori have disap- 
peared because of resonance overlapping, 
and a chaotically connected region has re- 
placed the regularity set. 

We have shown that for very slightly per- 
turbed systems, the Arnold web seems to 
indeed have the described structure, whereas 
when the strength of the perturbation is in- 
creased, the regular set shrinks until it almost 
completely disappears. In this way, the evo- 
lution from a mostly ordered system to a 
largely chaotic one is clearly represented, and 
it turns out to be in complete agreement with 
theoretical representations, except for the val- 
ue of E,, which numerically appears in the 
range [0.01, 0.041. The sharpness of Fig. 2 is 
not only important for didactic purpose but 
also gives hope that the method can provide a 
deeper comprehension of the more compli- 
cated physical systems. 
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