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Interhemispheric Asymmetries 
of the Modular Structure in 

Human Temporal Cortex 
Ralf A. W. ~aluske,'* Wolfgang Schlote,' Hansjiirgen Brat~ke,~ 

Wolf Singer' 

Language-relevant processing of auditory signals is lateralized and involves the 
posterior part of Brodmann area 22. We found that the functional lateralization 
in this area was accompanied by interhemispheric differences in the organi- 
zation of the intrinsic microcircuitry. Neuronal tract tracing revealed a modular 
network of long-range intrinsic connections linking regularly spaced clusters of 
neurons. Although the cluster diameter was similar in  both hemispheres, their 
spacing was about 20 percent larger in the left  hemisphere. Assuming similar 
relations between functional and anatomical architecture as in  visual cortex, the 
present data suggest that more functionally distinct columnar systems are 
included per surface unit in the left  than in  the right area 22. 

Neuropsychological, electrophysiological, unilateral activation during processing of lan- 
and noninvasive imaging studies indicate that guage-related signals is located in the poste- 
language comprehension and production are rior part of the first temporal gyms and the 
accompanied by activation of certain cortical posterior temporal plane (Fig. 1A) (3-6). 
areas. Several of these areas are activated This region corresponds to a discrete cytoar- 
only unilaterally in the dominant hemisphere chitectonical entity, the posterior part of area 
( I ,  2) .  One of the regions exhibiting robust 22 in the Brodmann classification (7), or to 

Table 1. lnterpatch distances and patch sizes in area 22. 

Patient 
Distance 

(leftlright) 
n P* Size 

(leftlright) n P* 

1450 p m  10 856 prn 10 

1236 p m  16 0.0114 844 prn 26 0.7 
M2 1432 p m  22 689 p m  24 

1099 p m  27 <0.0001 616 p m  
M3 1463 p m  20 728 p m  

1234 p m  23 0.0402 707 prn 
M4 1544 p m  43 746 p m  

1303 p m  34 0.0016 734 p m  
M8 1630 p m  28 823 p m  

1464 prn 30 0.0203 802 p m  
M9 1149 p m  45 572 p m  

1022 p m  23 0.0294 558 prn 
M I  1 1370 p m  44 0.0341 589 prn 

1207 p m  19 640 p m  

*P values arising from Mann-Whitney U test. 
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area TA1 after von Economo and Koskinas 
(8) and is distinguishable in both hemispheres 
on the basis of common cytoarchitectonic 
features. However, the temporal plane [(P), 
but see (lo)], in particular, area 22 ( l l ) ,  is 
significantly larger, and cell size and density 
are superior in the dominant hemisphere (12, 
13). In the dominant hemisphere, area 22 is 
involved in word detection and generation 
(3-6), which have been attributed to its abil- 
ity to process rapid frequency changes (14, 
15), whereas the homolog area in the non- 
dominant hemisphere appears to be special- 
ized in the discrimination of melody, pitch, 
and sound intensity (16, 17). 

The low spatial resolution of noninvasive 
methods prevents the analysis of local pro- 
cessing architectures in the human brain. 
However, certain aspects of microcircuitry 
can be studied postmortem with neuronal 
tracing techniques. In the visual cortex, close 
relations could be established between the 
layout of long-range intrinsic connections 
and the functional organization of cortical 
modules. These connections exhibit a high 
degree of topological specificity (18, 19) and 
reciprocally link discrete clusters of supra- 
granular pyramidal cells that are spaced at 
regular intervals (20, 21) and share similar 
functional properties (22-24). 

We examined the layout of long-range 
intrinsic connections in the posterior part of 
area 22 (Fig. 1A) of both hemispheres using 
postmortem implantation of carbocyanine 
dyes (25-27). To establish the extent to 
which interhemispheric structural differences 
already exist on the level of primary sensory 
areas, we also examined intrinsic connections 
in the primary auditory cortex (area 41, Fig. 
1A) of a limited sample of subjects. 

In posterior area 22, we found a dense 
plexus of tangential connections (Fig. 1D) 
bridging distances of up to 7 mm. Stained 
structures consisted of anterogradely labeled 
axons (Fig. 1E) and retrogradely labeled neu- 
rons (Fig. 1, B and C). Most of these neurons, 
especially at distances >3 mm Erom the site 
of dye implantation, were concentrated in 
supragranular layers and exhibited the mor- 
phological features of pyramidal cells (Fig. 1, 
B and C). Layer IV contained only very few 
labeled axons and retrogradely stained neu- 
rons. A small number of long-range axons 
and retrogradely labeled cells were present in 
layer V, and the latter were in register with 
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60528 Frankfurt a.M., Germany. zNeurological Insti- 
tute (Edinger Institute), University of Frankfurt Med- 
ical School, Deutschordenstrasse 46, 60528 Frankfurt 
a.M., Germany. 31nstitute of Forensic Medicine, Uni- 
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labeled neurons in supragranular layers. As in quantified the size of the labeled clusters and 
the visual cortex, retrogradely labeled cells their spacing (27). The size of the labeled 
and anterogradely stained axonal terminal ar- clusters was similar in both hemispheres (Ta- 
bors tended to be superimposed and to form ble 1 and Fig. 2C). However, the center-to- 
regularly spaced clusters around the injection center distance of the clusters was signifi- 
site (Fig. 1, C to E). For interhemispheric cantly larger in the left hemisphere in all 
comparison of this architectural feature, we seven subjects (Table 1 and Fig. 2C). The 

Fig. 1. (A) Cytoarchitectonic subdivision of the upper portion of the temporal lobe (see shaded area 
in the inset) according to  the classification of Brodmann (7). This parcellization is closely related to  
the classification of von Economo and Koskinas (8), with area 41 corresponding to  TC, area 52 to 
TD, area 42 to  TB, the posterior (post) portion of area 22 to  TA,, and the anterior (ant) portion of 
area 22 to  TA,. a, anterior; p, posterior. (B to  E) Patterns of postmortem Dil labeling in area 22 of 
the human temporal cortex. (B) Retrogradely labeled supragranular pyramidal neuron, about 5 mm 
from the dye crystal. Filled arrow, axon; open arrow, horizontal axon collateral. Scale bar, 125 pm. 
(C) Cluster of retrogradely DiA-labeled neurons (between the arrows) in the supragranular layers 
about 4 mm from the dye crystal. Scale bar, 250 pm. (D) Clusters of retrogradely labeled cells and 
anterogradely labeled axon terminals (arrows) in a tangential section through supragranular layers 
of left area 22. The dye crystal was about 1.5 mm beyond the left edge of the micrograph. Scale 
bar, 1 mm. m, medial; p, posterior. (E) Dil-labeled axons (open arrows) converging onto the same 
spot in a tangential section through supragranular cortical layers about 4.5 mm from the dye 
crystal. Filled arrow, terminal branching of one of the axons; asterisks, dendrites of two retrogradely 
labeled neurons. Scale bar, 100 pm. 
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Fig. 2. (A) Same horizontalsection as in Fig. ID, 
with dashed outlines demarcating patches. (B) 
Same as (A), with lines indicatingmeasured vari-
ables. Black arrows, patch diameters; gray arrows, 
interpatch distances. (C) Box plots of interpatch 
distances and patch sizes (ordinate) in the poste-
rior part of area 22. Boxes represent the 25th and 
the 75th percentile; horizontal lines indicate the 
10th and 90th percentile. Measurements from 
the same cases are grouped together; light gray 
boxes indicate data from left hemispheres, and 
dark gray boxes indicate data from right hemi-
spheres. Data are normalized to the respective 

C 2 

1.75 posterior A22 1 

0.5 I interpatch 
0.25 distance 

patch 
size 

right 

M9 M11 M9 M I 1  

i 1 
left right 

5 -

right 
left 

distance of patches from the number o f  patches per injection 
dye crystal 

Table 2. lnterpatchdistances and patch sizes in the primary auditory cortex. 

Patient Distance 
(Leftlright) n Size 

M9 867 prn 30 394 pm 30 
952 prn 52 0.1037 420 pm 54 

M I1 874 prn 36 418 pm 42 
913 prn 37 0.4256 432 prn 37 

*P  values arising from Mann-Whitney U test. 

mean value in each brain. (D) Box plots'of the 
interpatchdistancesand patchsizes in the prima-
ry auditory cortex (area 41). Conventions as in 
(C). (E) Box plots of distances between patches 
and injection site in area 22. (F) Box plots of the 
number of labeled clusters per dye injection in 
area 22. 

magnitude of this difference ranged from 12 
to 30% (Table 1). Comparativedata from the 
primary auditory cortex in two. of the sub-
jects, which both showed a significant asym-
metry in posterior area 22, did not reveal 
interhemispheric differences in spacing, sug-
gesting that the observed differences in pos-
terior area 22 are not reflecting a general 
interhemispheric asymmetry of microcircuit-
ry in the temporal lobe (Table 2 and Fig. 2D). 
However, this issue needs further investiga-
tion by analysis of other components of the 
central auditory system. 

Clustering could be a reflection of interdig-
itating subsystems of selectivelyinterconnected 
columns or of a single system of discrete, grid-
like connections. We implanted both dyes, DiI 
and DiA, in the same block of tissue (n = 10) 
at distances ranging from 1.5 to 3 mm. Each 
crystal labeled several clusters of neurons over 
a distance of up to 5 mm from the injection site. 
In most cases (n = 8), clusters labeled by 
different dyes were nonoverlapping and inter-
leaved (Fig. 3A). In only two cases, a few of the 
clusters overlapped (Fig. 3B). The overlap in-
cluded the complete area of single clusters, 
indicating that the two injections labeled the 
same connectivity system. This suggests the 
first scenario, i.e., interdigitating subsystems of 
selectively interconnected columns. Because 
cluster size was similar in the two hemispheres, 
the wider spacing implies that more subsystems 
can be included per surface unit in the left than 
in the right area 22. This interpretation is sup-
ported by the interhemispheric comparison of 
the number of clusters labeled by a single dye 
implantation and the distance of clusters from 
the implantation site (Fig. 2, E and F). The 

- average distance of the clusters from the im-
p* plantation site was similar in both hemispheres 
- (Fig. 2E). Accordingly, the number of labeled 

clusters per injection was slightly smaller in the 
0.04 left than in the right hemisphere (Fig. 2F), 

suggesting that left area 22 contains fewer ele-
0.203 ments of an individual connectivity system per-

unit area. 
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Fig. 3. (A and B) Cam- A era lucida drawines of 
the patchy patte& of 
long-range intrinsic con- 
nections in tangential 
sections through area 
22 after simultaneous 
injection of Dil and DiA. 
Dark gray, Dil; Light 
gray, DiA; asterisks, im- 
plantation sites. m, me- 
dial; a, anterior; d, dor- 
sal. (A) Pattern with in- 
terdigitating patches 
(arrows). (0) Pattern 
with two double-la- 
beled patches (arrows). 
(C) Estimation of the 
number of different subsystems of 
interconnected columns in left 
and right area 22. The error bars 
on the top of each column give 
the standard error of the mean. 
Interhemispheric differences were 
significant (Mann-Whitney U, P = 
0.01). 
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Calculations based on the measured cluster 
size and spacing suggest that the left area 22 
can contain about 30% more distinct sub- 
systems within the same volume of tissue (Fig. 
3C). Because area 22 is larger in the dominant 
than in the nondominant hemisphere ( I I ) ,  in- 
terdigitation of more columnar subsystems can 
be achieved without reducing the number of 
columns constituting a particular subsystem. 
Thus, if these subsystems are tuned to different 
features. as in the visual cortex. more feature 

the dominant hemisphere can be compensat- 
ed by the nondominant hemisphere (30), it is 
conceivable that the observed interhemi- 
spheric differences in the layout of intrinsic 
connections are at least in part due to use- 
dependent modifications of circuitry during 
early development. Future studies will have 
to determine the exact time course of postna- 
tal maturation of this connection system. 
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