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Although some uncertainties exist about these cli- 
matic responses (23), the medium-high scenario 
commonly forms the basis of current attempts to 
predict the impact of climate change on human 
health. Outputs of the medium-high scenario are 
the average of four separate CCM runs and are 
given as differences between the modeled present 
and modeled future conditions; the high-scenario 
outputs are scaled versions of the medium-high 
outputs (23). Following usual practice, the CCM 
differences were added to the observed 30-year 
climatic means (after cubic-spline interpolation to 
the same spatial resolution), to generate the pre- 
dicted future climate surfaces that were used in 
the present analysis. 

20. The "Cridded Population of the World" unsmoothed 
population density data file created by the Socioeco- 
nomic Data and Applications Center at Columbia Uni- 
versity (Palisades, NY) was obtained from the Center for 

lnternational Earth Science Information Network at 
ftp://ftp.ciesin.org/pub/data/Crid_Pop~World. This 
record of the 1994 human population density per 
square kilometer was turned into a raster image at 
1/12" spatial resolution and was subsequently used 
to estimate the total human population within the 
malarious areas shown in Fig. 1, A through C, allow- 
ing for the different land areas corresponding to 
pixels at different latitudes. Land pixels in the malaria 
map imagery were mapped onto their equivalent 6 
by 6 grid in the population density imagery, from 
which population totals were extracted and summed. 
This method estimated a total global population of 
561 1 million people in 1994, of which 2727 million 
lived within the predicted malarious areas of Fig. 1A. 
Under the medium-high scenario, 357 million people 
live within areas that are currently malaria-free but 
are predicted to become malarious by 2050, and 334 
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Analysis of a monthly 18-year cholera time series from Bangladesh shows that 
the temporal variability of cholera exhibits an interannual component at the 
dominant frequency of E l  Nitio-Southern Oscillation (ENSO). Results from 
nonlinear time series analysis support a role for both ENS0 and previous disease 
levels in the dynamics of cholera. Cholera patterns are linked to the previously 
described changes in the atmospheric circulation of south Asia and, consistent 
with these changes, to regional temperature anomalies. 

Cholera remains a major public health problem 
in many areas of the world, including Bang- 
ladesh and India. A climate influence on cholera 
has long been debated (I), and it has been 
suggested that ENSO, a major source of inter- 
annual climate variability, dnves the interannual 
variation of the disease (2, 3). For example, 
cholera reappeared in Peru with the El Niiio 
event of 1991-92 and seems to fluctuate season- 
ally in Bangladesh with sea surface temperature 
(SST) in the Bay of Bengal (2. 4). Recent 
studies of time series for diarrhoea1 diseases in 
Peruvian children have shown an increase in 
cases associated with warmer temperatures and 
the 1997-98 El Nifio (5,6 ) .  Vibrio cholerae, the 
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bacterium that causes the disease, is now known 
to inhabit brackish waters and estuarine systems 
(2) and thus might be sensitive to climate pat- 
terns. Here we examine the associations be- 
tween cholera and ENS0 and between cholera 
and climate at interannual time scales, using an 
18-year record from Bangladesh where the dis- 
ease is endemic. A nonlinear time series ap- 
proach allows us to consider different hypothe- 
ses for the roles of environmental driving vari- 
ables and the inherent disease dynamics in pro- 
ducing the interannual variability of cholera. 

The disease data consist of a monthly time 
series for cholera incidence between January 
1980 and March 1998 in Dhaka, Bangladesh 
(Fig. IA). Over the same time span, the month- 
ly SST anomaly in a region of the equatorial 
Pacific provides an index for ENS0 (Fig. 1B). 
The cholera time series displays the well-
known seasonal variation of the disease-typ- 
ically described as bimodal, with a small peak 
in the spring and a larger one in the fall or early 
winter-but also shows a multiyear modulation 
of the seasonal cycles. The interannual variabil- 
ity of cholera cases has a dominant frequency of 
113.7 years, as shown by singular spectrum 
analysis (7 ,  8 )  (Fig. 2). The same dominant 
frequency is found for the ENS0 time series, 
which suggests that climate variability acts as a 
driver in the dynamics of the disease (Fig. 2). 
Alternatively, however, this low-frequency 
variability could arise solely from the seasonal 

million live within currently malarious areas that are 
predicted to become unsuitable by 2050, a net in- 
crease of 23 million, or +0.84% on the 1994 baseline 
population data. For the high scenario, the corre-
sponding figures are 389 million, 414 million, and a 
net decrease of 25 million or -0.92%, respectively 
(Fig. 1C). 
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forcing of disease transmission (9). To investi- 
gate the role of ENS0 in light of this alternative 
explanation, we consider a nonlinear time series 
approach that allows us to compare specific 
alternative hypotheses for the underlying fac- 
tors in cholera dynamics. Because the null 
(non-ENSO) hypothesis is a nonlinear interac- 
tion between seasonality and cholera dynamics, 
the use of standard linear time series models 
would strongly bias the comparison in favor of 
the ENS0 alternative. 

Lacking information that could be used to 
specify a valid mechanistic model for the 
ENS0  effect, we use time series models that 
are both nonlinear and nonparametric and are 
effective at modeling high-dimensional rela- 
tionships. The dynamics of a variable of in- 
terest, N,, a measure of cholera levels, are 
modeled with a nonlinear equation of the 
form 

where Tn is a prediction time, f' is a nonlinear 
function: and E, is the environmental forcing 
under consideration (10, 11). The sin and cos 
functions implement a seasonal clock and e, 
represents the IID random noise variables. The 
parameters T, T,, and d denote, respectively, 
two different time lags and the number of time 
delay variables. Time delay coordinates are 
used in the model as surrogates for unobserved 
vanables influencing the endogenous dynamics 
of the disease, such as the fraction of suscepti- 
ble individuals in the population (12, 13). The 
functional f o m ~  of f'is not specified in a rigid 
form. Instead, the shape of f'is determined by 
the data, using an objective model selection 
criterion: generalized cross-validation (GCV) 
(14). We used the GCV criterion to compare 
models with and without seasonality and with 
and without the environmental covariate E, 
(Table 1). The selected model is low-dimen- 
sional and incorporates both seasonality and 
ENS0 as external forcings (Fig. 3). The model 
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also accounts for the largest fraction o f  the 
variance in the data. 

Could the better fit (the higher r2) o f  the 
model incorporating ENS0 simply result from 
the larger number o f  variables and parameters 
i n  that model? To address this question, we 
conducted parametric bootstrap tests for the 
significance o f  the improvement in fit (15). The 
result o f  these comparisions (Table 2) shows 
that the addition o f  the ENS0 index as a pre- 
dictor variable is highly significant. But so is 
the addition o f  previous disease levels. These 
results support a role for both extrinsic factors 
(ENS0 and seasonality) and intrinsic ones 
(previous disease levels) in the dynamics o f  
cholera. 

A positive influence o f  previous disease lev- 
els indicates a density-dependent effect in chol- 
era transmission. In the fall, when the largest 
values generally occur, this effect is o f  the 

Table 1. Comparison of models using the CCV 
model selection criterion V, The model (defined 
by Eqs. 1 and 2) is fitted to the cholera time series 
after the data are square-root-transformed, which 
normalizes the residuals and stabilizes the vari- 
ance. A time lag t of 2 months is used, based on 
the well-known rule of thumb of choosing the lag 
for which the autocorrelation function first crosses 
0.5. Thus, Eq. 1 takes the general form 

2.rr 27 
sin-t, cos-t, E ,-,, 12 12 

where Y, = fir When seasonality is incorporated 
but not the ENS0 index, low-dimensional models 
(d = 1 and d = 2) are selected (that is, they have the 
smallest values of the cross-validation criterion V,). 
The importance of seasonality is demonstrated by 
comparing these models to their autonomous coun- 
terparts. Models with an equivalent or larger number 
of independent variables (for example, d = 4 and 
d = 6) but no seasonality'have larger values of V, 
The importance of ENS0 is examined by incorporat- 
ing the ENS0 index into the simplest seasonal model 
(d = 1) at different time lags ( T ~  between 0 and 12 
months). The smallest V, value IS obtained for the 
model with T, = 11. This model is also selected over 
the seasonal one with an equal number of indepen- 
dent variables (d = 2). It has a higher rZ  value than 
the seasonal and autonomous models, accounting 
for a larger fraction of the variance. (For all models, 
the number of neurons k used in fitting the function 
f of Ea. 2 varied between 1 and 5. Only the model 

compensatory type: Cholera incidence increas- ities o f  transmission through water in the envi- 
es monotonically with previous levels but with ronment. Overcompensatory density depen- 
an ever decreasing slope. Compensatory densi- dence, a negative effect o f  previous levels on 

dependence can result from a decrease in the current levels, has been observed i n  other in- 
number o f  susceptible~ in the population after a fectious diseases (16) but is not apparent here 
large number o f  cases andlor from the complex- for a time lag o f  2 months. Although we cannot 

-24 Y 
Jan, 1983 Jan, 1988 Jan, 1992 Jan, 1996 

Time 

Fig. 1. (A) Time series 
of percentage of chol- 
era cases obtained by 
the ICDDR,B (Intema- 
tional Centre for Diar- 
rhoeal Diease Research, 
Bangladesh, in ~haka)  

Jan, 1983 Jan, 1988 Jan, 1992 Jan, 1996 from a systematic sam- 
ple of the patients vis- 

Fig. 2. Singular spectrum analysis applied to  the 2 15 
ENS0 index and to  the cholera time series with 
seasonality removed. For both time series, a T window length of 60 months was used. The - 0.5 - 
dominant eigenvalues for both data sets are 0 0 g 
given by a pair, indicating the existence of an ,e -0.5 -5 5 L: 
underlying oscillatory component. The ei- f -10‘' 
genspectrum of nonlinear signak typically ex- 
hibit three distinct regions: first, a group of -2 -15 

significant eigenvalues, used here to  obtain the 
1980 1984 1988 1992 1996 

Time (months) 
reconstructed components (A); then an inter- 
mediate slope; and finally the noise floor. Error - 900 

bars were calculated from the inverse of the 
lag-one AR coefficient with conservative weights 1 30 600 
according to  (23, 24). Projections of the signal - 25 500 ' 
onto the empirical orthogonal functions (EOFs) 2 20 
of the corresponding eigenvalues give the dif- * 15 300 2 
ferent principal components (PCs). To recon- 5 lo 2000 

struct the time series corresponding to several 100 

EOFs, the associated PCs are combined. This 0.05 0.1 0.15 
reconstruction process preserves the phase of Frequency (cycles/month) 
the time series. In addition, no information is 
Lost in the reconstruction, because the sum of all the individual reconstructed components gives 
the original time series. Here the four first components were used, which explain 46 and 76% of 
the variance for the cholera and ENS0 time series, respectively. In (B), spectra were computed 
with the maximum entropy method (MEM) applied t o  the reconstructed components in (A), 
respectively. The dominant peak in both spectra corresponds t o  a frequency of 0.0225 months 
(or 113.7 years). Results are robust t o  varying resolutions and MEM orders. Similar results were 
obtained with the multi-taper method (MTM). The peak corresponding t o  0.0225 months was 
significant at a 99% level and proved robust t o  varying resolutions and tapers. 

3' 

k i t h  the smallest V, is reported here.) A value of k 
larger than one in the selected ENS0 model indi- Fig. 3. The (square- cates that a linear time series model is not adequate a-o 

root-transformed) chol- to fit the causal relationships and would give a less s' era data (black Line) reliable conclusion about the role of ENSO. 3 6.0 and the 2-months- 
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rule out overcompensation for disease levels 
higher than the ones observed, this difference 
can result from a less effective immunity in the 
case of cholera. 

A positive effect of ENS0 is observed on 
the 2-month-ahead predictions of cholera inci- 
dence in the fall (November, for example). This 
is the time of the year during which the second 
and largest outbreak of cholera typically occurs 
in the bimodal seasonal cycle. Cholera inci- 
dence 2 months ahead increases with both SST 
anomaly and present incidence. The sensitivity 
to changes in the ENS0 index is largest for 
increasing negative values of the SST anomaly; 
that is, for changes that anticipate an El Niiio, 
and for increasing and large positive values- 
changes that occur during an El Niiio. Later in 
the spring (April, for example), the levels of 
cholera incidence are typically lower. Disease 
levels can either increase or decrease with the 
ENS0 index. Incidence goes up with increasing 
negative values of the SST anomaly, as for 
changes that would anticipate an El Niiio. It 
decreases, however, with increasing positive 
values of the SST anomaly. One possible inter- 
pretation of this pattem is that large peaks in the 
fall are typically followed by small increases of 

incidence in the spring (from February into 
April). This inverse relation is indeed observed 
in the data. These results indicate that the dy- 
namics of cholera in Bangladesh are consistent 
with a remote forcing by ENSO. 

ENS0 is thought to affect the atmospheric 
circulation in the Indian Ocean and south Asia: 
Changes in cloud cover and evaporation associ- 
ated with a weakening of the local Hadley cell 
increase the heat flux entering this region a few 
months after warming of the Pacific during an 
El Niiio (17). This provides a possible mecha- 
nistic connection between El Niiio and regional 
climate variables potentially having an impact 
on cholera in Bangladesh. We considered three 
interrelated climate variables: upper-tropospher- 
ic humidity, cloud cover, and top-of-atmosphere 
absorbed solar radiation. From global satellite- 
retrieved fields for these variables (18-20), we 
computed global correlation maps between 
the cholera time series in Dhaka and the cli- 
mate time series at the different points of the 
global grid, with temporal lags ranging from 
2 1 2  months. The strongest associations are 

found for negative lags; that is, for the climate 
variables leading cholera by 4 to 6 months 
(Fig. 4). These maps also show coherence 
with those obtained from correlations of the 
climate anomaly fields with an ENS0 index, 
instead of cholera, and for a positive lag of 6 
months [(21) and figure 3 in (17)l. Thus, the 
same changes in the atmospheric circulation 
in south Asia that trail the warming of the 
Pacific appear to anticipate changes in the 
interannual variation of cholera in Bang- 
ladesh. The time lags in these associations are 
consistent with the 1 1-month delay found be- 
tween cholera and ENS0 in our time series 
analysis. 

The above results suggest that an increase 
in local temperature ultimately mediates the 
influence of ENS0 on cholera. Higher ambi- 
ent temperatures would correspond to higher 
water temperatures in shallow bodies of wa- 
ter, such as ponds and rivers in the large 
estuary of Bangladesh and shallow coastal 
waters of the Bay of Bengal. Satellite data 
show that a positive association between 

Fig. 4. Maps of correlation coefficients between 
cholera in Dhaka and anomalies in two satel- 
lite-retrieved fields 4 months earlier: (A) upper 
tropospheric humidity and (B) top-of-atmo- 
sphere absorbed solar radiation. The colored 
regions indicate areas of positive and negative 
correlations, and the black boundaries indicate 
the areas where correlations are significant at 
the 0.002 level. (For each particular point in the 
map, the significance was calculated with a 
Monte Carlo test by randomly rearranging the 
elements of each time series at all points in 999 
permutations.) 

Fig. 5. Maps of correlation coefficients between cholera in Dhaka and temperatures on land and at 
sea for different lags, with the environmental variable anticipating disease. Monthly temperature 
data for the period from 1980 to 1995 were extracted from the Global Ocean Surface Temperature 
Atlas (GOSTAplus) for a grid of 5" latitude and longitude. Data were provided by the NASA Physical 
Oceanography Distributed Active Archive Center at the Jet Propulsion LaboratoryICalifornia In- 
stitute of Technology. Black boundaries indicate regions where the correlations are significant at 
the 0.002 level (see the legend to Fig. 4 for details). 

Table 2. Parametric bootstrap test for the significance of additional predictor variables. Comparisons are 
made only across the best models previously selected with the GVC criterion. The models with previous 
disease levels and seasonality as the predictor variables are labeled as "dynamic seasonal," and the model 
that in addition incorporates the ENS0 index is labeled as "seasonal E N S 0  ( T ~  = 11). The mean, SD, and 
maximum (Max.) value of A,rZ are computed from the bootstrap data with n = 1000. We assess first the 
significance of adding the ENS0 index as a predictor variable by considering the dynamic seasonal models 
as the null hypothesis. In all cases, the addition of ENS0 as a predictor variable is highly significant (a = 
0.001). We then assess the significance of considering previous disease levels as a predictor variable. We 
compare the seasonal ENS0 model, which does incorporate previous disease levels, to the corresponding 
model built only from the seasonal clock and the ENS0 index, which we label "environmental" ( T ~  = 11, 
k = 3). The environmental model performs poorly, with r2 = 44% (even for an equal number of neurons 
k). The addition of previous disease levels as a predictor variable is highly significant (a = 0.001). For all 
comparisons, we also recorded the number of times that the cross-validation criterion failed to select the 
correct model (the null model). This frequency is given as the probability of A,V, being negative in the last 
column. Results show that this frequency is extremely small for all comparisons. 

Null model Alternative Observed Mean SD Max. Prob. 
model A,r2 A A Alr2 AIV, < 0 

Dynamic seasonal (d = 1) Seasonal ENS0 12.03 4.90 1.12 10.30 0.03 
Dynamic seasonal (d = 2) Seasonal ENS0 9.93 2.00 1.77 7.61 0.024 
Environmental Seasonal ENS0 23.37 1.47 1.18 6.46 0.069 
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cholera and temperature is first observed to 
the north of Bangladesh over the Himalayas, 
where temperature leads cholera increases by 
6 months (Fig. 5). The pattern then moves 
south, though it weakens, as the lag to cholera 
decreases. Ambient temperatures have also 
been implicated in the dynamics of diarrhoea1 
diseases and of V. cholerae in the environ- 
ment in Peru (5, 22), and SSTs have been 
shown to display a bimodal seasonal cycle 
similar to that of cholera cases in Bangladesh 
(2, 4).  

Another mediating factor in the ENSO- 
cholera relation might be the melting of the 
snowpack in the Himalayas, through its effect 
on the monsoons, precipitation, and river dis- 
charge. This scenario, which remains to be 
investigated, is suggested by the strong but 
reduced pattern appearing to the north of 
Bangladesh (Fig. 5, first and second panels). 
Floods and droughts can affect not only hu- 
man interactions with water resources and 
therefore exposure to the pathogen, but also 
sanitary conditions and susceptibility to disease. 
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Myotonic dystrophy (DM), the most common form of muscular dystrophy in 
adult humans, results from expansion of a CTC repeat in the 3' untranslated 
region of the DMPK gene. The mutant DMPK messenger RNA (mRNA) contains 
an expanded CUC repeat and is retained in the nucleus. We have expressed an 
untranslated CUC repeat in an unrelated mRNA in transgenic mice. Mice that 
expressed expanded CUC repeats developed myotonia and myopathy, whereas 
mice expressing a nonexpanded repeat did not. Thus, transcripts with expanded 
CUC repeats are sufficient to generate a DM phenotype. This result supports 
a role for RNA gain of function in disease pathogenesis. 

Myotonic dystrophy (DM, prevalence 1 in 7400 
live births) is characterized by dominantly in- 
herited muscle hyperexcitability (myotonia), 
progressive myopathy, cataracts, defects of car- 
diac conduction, neuropsychiatric impairment, 
and other developmental and degenerative 
manifestations (1).This complex phenotype re- 
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sults from the expansion of a CTG repeat in the 
3' untranslated region (3'UTR) of the DrWK 
gene, which encodes a serine-threonine protein 
kinase (2). The transcripts from the mutant 
allele are retained in the nucleus (3, 4), and 
levels of DMPK protein are correspondingly 
reduced (5). The expanded repeat also changes 
the structure of adjacent chromatin (6) and 
silences the expression of a flanking gene (7, 8), 
Sm,which encodes a transcription factor' 

The effects on DMPK and SIX5 expression 
may account for particular aspects of the DM 
phenotype. Dmpk krmckout mice have reduced 
force generation in skeletal muscle (9) and ab- 
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