
proteins will inevitably prove refractory to 
biochemical manipulation. Nonetheless, the 
effort will be worthwhile if the many proteins 
that are amenable can be assayed both simul- 
taneously and repeatedly. By fabricating pro- 
tein microarrays, we can fulfill both these 
criteria, facilitating the in vitro study of pro- 
tein function on a genome-wide level. 
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The Global Spread of Malaria in 

a Future, Warmer World 

David J. Rogers1* and Sarah E. RandolphZ 

The frequent warnings that global climate change will allow falciparum malaria 
to spread into northern latitudes, including Europe and large parts of the United 
States, are based on biological transmission models driven principally by tem- 
perature. These models were assessed for their value in predicting present, and 
therefore future, malaria distribution. In an alternative statistical approach, the 
recorded present-day global distribution of falciparum malaria was used to 
establish the current multivariate climatic constraints. These results were ap- 
plied to future climate scenarios to predict future distributions, which showed 
remarkably few changes, even under the most extreme scenarios. 

Predictions of global climate change have stim- 
ulated forecasts that vector-borne diseases will 
spread into regions that are at present too cool 
for their persistence (1-5). For example, life- 
threatening cerebral malaria, caused by Plas-
modium faleiparum transmitted by anopheline 
mosquitoes, is predicted to reach the central or 
northern regions of Europe and large parts of 
North America (2, 4). falciparum malaria is the 
most severe form of the human disease, causing 
most of the -1 million deaths worldwide 
among the -273 million cases in 1998 ( 6 ) .  
Despite these figures, the epidemiology of ma- 
laria, like many other vector-borne tropical dis- 
eases, remains inadequately understood. Only 
the most general of maps for its worldwide 
distribution are available (7 ) ,  and its global 
transmission patterns cannot be modeled satis- 
factorily because crucial parameters and their 
relations with environmental factors have not 
yet been quantified. Most importantly, absolute 
mosquito abundance has not yet been related to 
multivariate climate. 

Nevertheless, the problem of malaria has led 
to its being included in most predictions about 
the impact of climate change on the fUture 
distribution of vector-borne diseases (8).These 
studies, which draw on the forecasts of future 
climate from various global circulation models 
(GCMs) (9, lo), generally use only one or at 
most two climatic variables to make their pre- 
dictions. Biological models for malaria distri- 
bution are based principally on the temperature 
dependence of mosquito blood-feeding inter- 
vals and longevity and the development period 
of the malaria parasite within the mosquito, 
each of which affects the rate of transmission 
(4, 11). Those models based on threshold val- 
ues include a lower temperature threshold, be- 
low which all development of the malaria par- 
asite ceases, and an upper limit of mosquito 
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lethality (2). In addition, the suitability (or un- 
suitability) of habitats for these vectors, which 
require a minimum atmospheric moisture, is 
defined by the ratio of rainfall to potential 
evapotranspiration (2). The output of such mod- 
els, therefore, represents predicted areas where 
parasite development within the vector is fast 
enough to be completed before the vector dies, 
bounded by limits imposed by habitat suitabil- 
ity (2). The fit of these predictions to the current 
global malaria situation shows noticeable mis- 
matches in certain places (12); false predictions 
of presence (e.g., over the eastern half of the 
United States) are accounted for by past control 
measures or by "peculiar vector biogeography," 
whereas false predictions of absence are dis- 
missed as model errors (2). 

Refinements of these biological models (3-
5) are based on modifications of an equation 
describing transmission potential, expressed as 
the basic reproduction number R,, which must 
equal at least 1 for disease persistence (13, 14). 
For an estimation of the correct value of R, 
from which to predict malaria distribution, ab- 
solute, not relative, estimates of all quantities in 
the equation are needed. Instead, by omitting 
certain unquantified but important parameters 
and rearranging the equation (15), a relative 
measure of "epidemic potential" (EP) [low 
"transmission potential" (5)] has been derived 
as the reciprocal of the vectorhost ratio re-
quired for disease persistence. This predicts a 
more extensive present-day distribution of ma- 
laria than is currently observed (12). The ratio 
of future EP to present EP is then presented as 
indicating the relative degree of the future risk 
of malaria, but this is an inappropriate measure 
of changing risk because a high ratio may still 
leave R, < 1. 

Until such biological approaches can give 
accurate descriptions of the current situation of 
global malaria, they cannot be used to give 
reliable predictions about the future. Instead, an 

hvo-step to map-
ping vector-bome diseases gave a better de- 
scription of the present global distribution of 
f~lc ipammITlalaria and predicted remarkably 
few future changes, even under the most ex- 
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treme scenarios of climate change. First, the 
present-day distribution was used to establish 
the climatic constraints currently operating on 
malaria. Then, the results were applied to future 
GCM scenarios to predict future distribution. 
Simple maximum likelihood methods were 
used (16) (Fig. lA), based on the mean, max- 
imum, and minimum of three climatic vari- 
ables: temperature, precipitation, and saturation 

Fig. 1. (A) Current 
global map of malaria 
caused by P. falcipa- 
rum bellow hatching, 
data from (7)] and 
distribution predicted 
with maximum likeli- 
hood methods (red 
through green poste- 
rior probability scale 
in key; light blue areas 
indicate no prediction, 
i.e., conditions very 
different from those in 
any of the sites used to 
train the analysis). 
These methods give 
predictions that are 
78% correct, with 14% 
fahpositives and 8% 
false-negatives (72). 
(8) Discriminating cri- 
teria derived from the 
current situation were 
then applied to the 
equivalent climate 
surfaces from the 
high scenario from 
the HadCM2 experi- 
ment (79) which pre- 
dicts mean global 
land surface changes 
of +3.4S0, +3.63O, 
and +3.2g°C in 
mean, minimum, and 
maximum tempera- 
tures, respectively; 
+1.87 hPa for SVP; 
and +0.127 mmlday 
for precipitation by 
the year 2050. The 
vellow hatching and 

vapor pressure. The match between prediction 
and reality was significantly closer than that 
achieved by previous models (12). Some false- 
positive areas, in eastern South America and 
Iran, were recorded as of "limited risk" on 
earlier maps (1 7), whereas others, in the south- 
em United States and northern Australia, coin- 
cided with successful vector control campaigns. 
Because these predictions were based on 

present-day malaria maps, the disappearance of 
malaria in historical times from the edges of its 
global distribution has effectively been incor- 
porated (18). This itself is a reflection of cli- 
matic conditions. In cooler regions, where mos- 
quito life-spans barely exceed extrinsic incuba- 
tion periods, transmission cycles are inherently 
more fragile. Not only the range of each climat- 
ic variable, but also the covariation between 

ihe probability-scale 
are the same as in (A). 
(C) The difference be- 
tween the predicted 
distributions given in 
(A) and (B), showing 
areas where malaria 
is predicted to disap- 
pear (i.e., probability 
of occurrence de- 
creases from >0.5 to 
<0.5) (in red) or in- 
vade (i.e., probability 
of occurrence increas- 
es from <0.5 to 
>O.S) (in green) by 
the 2050s in relation 
to the present situa- 
tion. The gray hatch- 
ing is the current 
global malaria map 
shown in yellow hatching in (A). 
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variables proved to be important in setting dis- 
tributional limits in this model. Biologically, 
this implies that organisms can cope with ex- 
tremes of some variables (e.g., temperature) 
only if others (e.g., humidity) are at certain 
levels. 

The results from this first step were applied 
to the most widely used GCM scenario of the 
future, which envisages a 1% annual compound 
increase in overall greenhouse gas concentra- 
tions (9, 19) and a range of climate sensitivity to 
this increase. Predictions show the future distri- 
bution of habitats similar to those where,falci- 
parurn malaria occurs today (Fig. 1B). If intro- 
duced, by travel or trading activities, for exam- 
ple, both vectors and parasites could survive in 
such places. Only a relatively small extension 
was predicted as compared to the present-day 
situation: northward into the southem United 
States and into Turkey, Turkmenistan, and 
Uzbelustan; southward in Brazil; and westward 
in China. In other areas, malaria was predicted 
to diminish (Fig. 1, B and C). The net effect of 
this on the potential exposure of humans to 
malaria by the year 2050, compared with the 
present as modeled in Fig. 1A (20),varied with 
climate sensitivity to greenhouse gases; for ex- 
ample, there was an increase in exposure of 23 
million people (+0.84%) under the HadCM2 
"medium-high" scenario (19) or a decrease in 
exposure of 25 million people (-0.92%) in the 
HadCM2 "high" scenario (i.e., higher mean 
temperatures) (Fig. 1C). These changes are 
modest because covariates limit potential ex- 
pansion along certain dimensions of environ- 
mental space. For example, in the present exer- 
cise, a univariate model driven by the minimum 
of the mean temperature (the single most im- 
portant predictor in the multivariate fit) would 
predict more extensive malaria than at present 
along the southern fnnges of the Sahara Desert 
and an expansion northward into the Sahara, as 
global warming lifts the cold minimum (night- 
time) temperature constraint on mosquito or 
malaria development. Multivariate models gave 
more accurate predictions of the present situa- 
tion and do not predict this expansion, because 
of the limitations imposed by the covarying 
rainfall or moisture variables. 

Whereas others have raised qualitative 
doubts about the predicted impact of climate 
change on malaria ( l a ) ,the quantitative model 
presented here contradicts prevailing forecasts 
of global malaria expansion. It highlights the 
use of multivariate rather than univariate con- 
straints in such applications and the advantage 

of rather than approaches
in situations where biological knowledge is in- 
comnlete. Whatever the method ado~ted. the .- ---r - ~ - - ~~ 	 ' ,  

usefulness of G C M ~as a basis for making 
predictions about the future of biological sys- 
tems needs further clarification. The current 
low resolution of such models hides 
considerable local variation and represents 
mean conditions across large geograph~cal ar- 

eas that may not occur in many places within 
them. Furthermore, the accuracy of GCMs in 
predicting the covariation of climatic variables, 
to which biological systems are very sensitive, 
is unknown. 
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Cholera Dynamics and E l  
Nifio-Southern Oscillation 
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Analysis of a monthly 18-year cholera time series from Bangladesh shows that 
the temporal variability of cholera exhibits an interannual component at the 
dominant frequency of E l  Nitio-Southern Oscillation (ENSO). Results from 
nonlinear time series analysis support a role for both ENS0 and previous disease 
levels in the dynamics of cholera. Cholera patterns are linked to the previously 
described changes in the atmospheric circulation of south Asia and, consistent 
with these changes, to regional temperature anomalies. 

Cholera remains a major public health problem 
in many areas of the world, including Bang- 
ladesh and India. A climate influence on cholera 
has long been debated (I), and it has been 
suggested that ENSO, a major source of inter- 
annual climate variability, dnves the interannual 
variation of the disease (2, 3). For example, 
cholera reappeared in Peru with the El Niiio 
event of 1991-92 and seems to fluctuate season- 
ally in Bangladesh with sea surface temperature 
(SST) in the Bay of Bengal (2. 4). Recent 
studies of time series for diarrhoea1 diseases in 
Peruvian children have shown an increase in 
cases associated with warmer temperatures and 
the 1997-98 El Nifio (5,6 ) .  Vibrio cholerae, the 

'Center of Marine Biotechnology, University of Mary- 
land Biotechnology Institute, 701 East Pratt Street, 
Suite 236, Columbus Center, Baltimore, MD 21202, 
USA, and Biology Department, Woods Hole Oceano- 
graphic Institution. Woods Hole, MA 02543, USA. 
2Climate Research Group, PCB-University of Barce- 
lona, and Department of Ecology, University of Bar- 
celona. 08028 Barcelona, Catalunya, Spain. 3Depart- 
ment of Ecology and Evolutionary Biology, Cornell 
University, Ithaca. NY 14853, USA. 4Center of Marine 
Biotechnology, University of Maryland Biotechnology 
Institute, Baltimore, MD 21202. USA, and Department 
of Cell and Molecular Biology. University of Maryland, 
College Park. College Park. MD 20742, USA. 5Depart- 
ment of Infectious and Tropical Diseases. London 
School of Hygiene and Tropical Medicine, University 
of London. London WC1E 7HT. UK. 

*To whom correspondence should be addressed. E-
mail: mercedes@pampero.umbi.umd.edu 

bacterium that causes the disease, is now known 
to inhabit brackish waters and estuarine systems 
(2) and thus might be sensitive to climate pat- 
terns. Here we examine the associations be- 
tween cholera and ENS0 and between cholera 
and climate at interannual time scales, using an 
18-year record from Bangladesh where the dis- 
ease is endemic. A nonlinear time series ap- 
proach allows us to consider different hypothe- 
ses for the roles of environmental driving vari- 
ables and the inherent disease dynamics in pro- 
ducing the interannual variability of cholera. 

The disease data consist of a monthly time 
series for cholera incidence between January 
1980 and March 1998 in Dhaka, Bangladesh 
(Fig. IA). Over the same time span, the month- 
ly SST anomaly in a region of the equatorial 
Pacific provides an index for ENS0 (Fig. 1B). 
The cholera time series displays the well-
known seasonal variation of the disease-typ- 
ically described as bimodal, with a small peak 
in the spring and a larger one in the fall or early 
winter-but also shows a multiyear modulation 
of the seasonal cycles. The interannual variabil- 
ity of cholera cases has a dominant frequency of 
113.7 years, as shown by singular spectrum 
analysis (7 ,  8 )  (Fig. 2). The same dominant 
frequency is found for the ENS0 time series, 
which suggests that climate variability acts as a 
driver in the dynamics of the disease (Fig. 2). 
Alternatively, however, this low-frequency 
variability could arise solely from the seasonal 

million live within currently malarious areas that are 
predicted to become unsuitable by 2050, a net in- 
crease of 23 million, or +0.84% on the 1994 baseline 
population data. For the high scenario, the corre-
sponding figures are 389 million, 414 million, and a 
net decrease of 25 million or -0.92%, respectively 
(Fig. 1C). 
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forcing of disease transmission (9). To investi- 
gate the role of ENS0 in light of this alternative 
explanation, we consider a nonlinear time series 
approach that allows us to compare specific 
alternative hypotheses for the underlying fac- 
tors in cholera dynamics. Because the null 
(non-ENSO) hypothesis is a nonlinear interac- 
tion between seasonality and cholera dynamics, 
the use of standard linear time series models 
would strongly bias the comparison in favor of 
the ENS0 alternative. 

Lacking information that could be used to 
specify a valid mechanistic model for the 
ENS0  effect, we use time series models that 
are both nonlinear and nonparametric and are 
effective at modeling high-dimensional rela- 
tionships. The dynamics of a variable of in- 
terest, N,, a measure of cholera levels, are 
modeled with a nonlinear equation of the 
form 

where Tn is a prediction time, f' is a nonlinear 
function: and E, is the environmental forcing 
under consideration (10, 11). The sin and cos 
functions implement a seasonal clock and e, 
represents the IID random noise variables. The 
parameters T, T,, and d denote, respectively, 
two different time lags and the number of time 
delay variables. Time delay coordinates are 
used in the model as surrogates for unobserved 
vanables influencing the endogenous dynamics 
of the disease, such as the fraction of suscepti- 
ble individuals in the population (12, 13). The 
functional f o m ~  of f'is not specified in a rigid 
form. Instead, the shape of f'is determined by 
the data, using an objective model selection 
criterion: generalized cross-validation (GCV) 
(14). We used the GCV criterion to compare 
models with and without seasonality and with 
and without the environmental covariate E, 
(Table 1). The selected model is low-dimen- 
sional and incorporates both seasonality and 
ENS0 as external forcings (Fig. 3). The model 
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