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W e  have fabricated sonic crystals, based on  the idea o f  localized resonant 
structures, that  exhibit spectral gaps w i th  a lattice constant t w o  orders o f  
magnitude smaller than the relevant wavelength. Disordered composites made 
from such localized resonant structures behave as a material w i th  effective 
negative elastic constants and a to ta l  wave reflector within certain tunable 
sonic frequency ranges. A 2-centimeter slab o f  this composite material is shown 
t o  break the conventional mass-density law o f  sound transmission by one o r  
more orders o f  magnitude a t  400 hertz. 

Complete sound attenuation for a certain 
frequency range can be achieved through 
the concept of a "classical wave spectral 
gap," originally introduced in relation to 
the electromagnetic wave, denoted the 
"photonic band gap" (I). Subsequently ex- 
tended to elastic waves (2-5), the idea 
states that a strong periodic modulation in 
density andlor sound velocity can create 
spectral gaps that forbid wave propaga- 
tion. However, the spatial modulation must 
be of the same order as the wavelength 
in the gap. It is thus not practical for shieid- 
ing acoustic sound, because the structure 
would have to be the size of outdoor sculp- 
tures in order to shield environmental nois- 
es (5). 

We present a class of sonic crystals that 
exhibit spectral gaps with lattice constants 
two orders of magnitude smaller than the 
relevant sonic wavelength. Our materials 
are based on the simple realization that 
composites with locally resonant structural 
units can exhibit effective negative elastic 
constants at certain frequency ranges. If a 

. - - .  
wave with angular frequency w interacts 
with a medium carrying a localized excita- 
tion with frequency w,, the linear response 
functions will be proportional to ll(wo2 - 
w2). Such an effect is manifest in the elec- 
tromagnetic frequency response of materi- 
als with optical resonances, where a nega- 
tive dielectric constant E (generally on the 
higher frequency side of the resonance) 
implies a purely imaginary wave vector k = 
nwlc (where n is the index of refraction and 
c is the speed of light) and hence exponen- 
tial attenuation of the electromagnetic wave 
(6). Here, we implement this idea in the 
context of elastic composites at sonic fre- 
quencies. By varying the size and geometry 
of the structural unit, we can tune the fre- 
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quency ranges over which the effective 
elastic constants are negative. 

Our composites have a simple micro- 
structure unit consisting of a solid core 
material with relatively high density and a 
coating of elastically soft material. In the 
experiments described below, we used cen- 
timeter-sized lead balls as the core materi- 
al, coated with a 2.5-mm layer of silicone 
rubber (Fig. 1A). The coated spheres are 
arranged in an 8 X 8 X 8 simple cubic 

crystal with a lattice constant of 1.55 cm 
(Fig. lB), with epoxy as the hard matrix 
material. Sonic transmission was measured 
using a modified Bruel & Kjaer (B&K) 
two-microphone impedance measurement 
tube, type 4206. The sound source was 
mounted at one end of the tube. The sample 
was placed at the other end of the tube, with 
one microphone detector mounted on the 
surface of the sonic crystal facing the sound 
source and another a few centimeters to- 
ward the sound source. A small hole was 
drilled from the rear of the sample, along 
the centerline of the sonic crystal to its 
center. A detector was placed inside the 
hole, with the sensitive part approximate- 
ly located at the center of the sonic crystal. 
Transmission was measured as a func- 
tion of frequency from 250 Hz to >I600 
Hz for effectively a four-layer sonic crys- 
tal. The sound source intensity was adjust- 
ed so as to maintain a nearly frequency- 
independent measured amplitude at the 
front of the crystal. The ratio of the ampli- 
tude measured at the center to the incident 
wave shows two dips, with a peak after 
each dip (Fig. 1C). 

To understand the experimental results, 
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Fig. 1. (A) Cross section of a coated lead sphere that forms the basic structure unit (B) for an 8 X 
8 X 8 sonic crystal. (C) Calculated (solid line) and measured (circles) amplitude transmission 
coefficient along the [I001 direction are plotted as a function of frequency. The calculation is for 
a four-layer slab of simple cubic arrangement of coated spheres, periodic parallel to the slab. The 
observed transmission characteristics correspond well with the calculated band structure (D), from 
200 to 2000 Hz, of a simple cubic structure of coated spheres. Three modes (two transverse and 
one longitudinal) are distinguishable in the [I101 direction, t o  the Left of the r point. The two 
transverse modes are degenerate along the [I001 direction, to  the right of the r point. Note the 
expanded scale near the r point. 
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we have implemented a rigorous multiple- 
scattering theory (7) for the calculation of 
elastic wave propagation and scattering in a 
composite medium with coated spherical 
inclusions. The band structure for an infi- 
nite periodic structure with a simple cubic 
arrangement of coated spheres was calcu- 
lated (Fig. ID). The concentration, size of 
the core sphere, and coating thickness are 
fixed at the experimental values (8). The 
most notable predictions of the theory are 
the two large band gaps with flat lower 
edges, which indicate the existence of lo- 
calized modes (4). The band structure (Fig. 
1D) is quite different from conventional 
photonic or acoustic-elastic band struc- 
tures, where the midgap frequency and the 
size of the spectral gap are dependent on 
direction and a complete band gap appears 
only when the spectral gaps in differ- 
ent directions happen to overlap in all M IT 
radians. Here, the gap is essentially the 
same at any k-point inside the Brillouin 
zone (Fig. ID). Note that at 500 Hz, the 
center of the lower frequency gap, the lat- 
tice constant of our sonic crystal is 300 
times smaller than that of longitudinal 
wavelength in epoxy. 

The band structure (Fig. 1D) is for an 
infinite periodic system. Because measure- 
ment can only be done on finite structures, 
only partially developed gaps can be de- 
tected. For a better comparison, we have 
also calculated the amplitude transmission 
through a four-layer structure that is periodic 
along the two directions parallel to the slab 
(solid line in Fig. 1C). The theoretical predic- 
tions, with no adjustable parameters, are in 
good accord with the experimental results, in 
terms of the frequency positions of the dips 
(located at 380 and 1350 Hz) as well as the 
qualitative resonance features of a dip in 
transmission followed by a peak. Although 
transmission measurement in one direction 
alone does not establish the existence of a 
complete band gap, the agreement between 
theory and experiment lends support to the 
existence of a complete band gap in an infi- 
nite crystal of locally resonant structures (see 
below and Fig. 2), with subwavelength lattice 
constants. The discrepancy between the mea- 
sured and predicted dip magnitudes is due to 
the sensitivity limit of the detector. The is- 
sues of absorption and phase are examined 
independently, as described below. 

At frequencies away from the resonanc- 
es, the composite system behaves as an 
effective medium in which the elastic 
waves scatter weaklv from the subwave- 
length scatterers and have linear dispersion 
(w versus k) relations. However, the built- 
in localized resonances due to the coated 
spheres give rise to flat dispersions that are 
nearly k-independent. Coupling with the 
otherwise linearly dispersed elastic waves 

opens spectral gaps in the band structure 
(Fig. ID) due to the level-repulsion effect. 
For a finite sample, the transmission will 
have dips in the spectral gaps. At the first 
dip frequency, the lead particle is seen to 
move as a whole along the direction of 
wave propagation, with large strain at the 
lead particle-silicone rubber interface (Fig. 
2A). This low-frequency resonance may be 
understood as an oscillation, in which the 
inner core provides the heavy mass and 
the silicone rubber provides the soft spring. 
At the second dip, the maximum displace- 
ment occurs inside the silicone rubber (Fig. 
2B). The displacement of the lead particle 
is small but nonzero. This is analogous to 
the "optical mode" in molecular crystals 
with two atoms per unit cell, where one of 
the atoms is much heavier than the other. 
Around the resonance frequencies, the re- 
sponse function has large dispersion, lead- 
ing to a dip in the region of negative elastic 
constants and hence exponential wave at- 
tenuation, followed by "resonant transmis- 
sion" when the effective elastic constants 
satisfy the required condition. As the num- 
ber of layers increases, the dip is seen to 
define the position of the lower edge of 
the band gap, whereas the peak defines the 
upper edge. Consistent with the large mag- 
nitude of the response function close to the 
resonances, the effective wavelength in 
our composite is substantially reduced in 
those frequency ranges (relative to that 
in air or the epoxy host), thus leading to 
coupling with the coated spheres and strong 
scattering. 

Because of the localized nature of the 
resonances, sonic attenuation should be ap- 
parent even for one monolayer of coated 
spheres in the absence of periodicity. This 
may be demonstrated by measuring the am- 
plitude transmission and reflection for a 
circular plate 2.1 cm thick and 9.8 cm in 
diameter, containing 48 volume % of ran- 
domly dispersed 10-mm lead spheres, each 
coated with a 3.5-rnm layer of silicone 
rubber. Measurements were done using the 
same B&K system. The sample was tightly 
mounted at the end of the tube, with anoth- 
er tube directly mounted behind the sample. 
Four microphones were put in the couplers 
located symmetrically on both sides of the 
sample. The signals were measured using 
lock-in amplifiers. The transmission coef- 
ficient of the composite sample (Fig. 3) 
exhibits two significant dips centered at 
400 and 1100 Hz, where the lower frequen- 
cy minimum is at least one order of mag- 
nitude smaller than the epoxy reference 
(Fig. 3). These dips may be regarded as 
partially developed spectral gaps caused by 
negative effective elastic constants (see be- 
low and Fig. 4). Reflection measurements 
were carried out. For both the pure epoxy 

sample and the composite sample, reflec- 
tion coefficient as a function of frequency 
varies between 0.98 and 1, that is, within 
the measurement error. We conclude that 
absorption is negligible for our samples. As 
a sound shield, our material thus differs 
from those commercial sound insulation 
materials that rely on absorption (9). 

The amplitude transmission coefficient 
T at normal incidence through a slab of 
homogeneous material with thickness d 
(10) is 

where v = ( ~ ~ p ~ / ~ , p , ) ~ ~ ,  k2 = w / ( ~ ~ / p ~ ) ~ ~ ,  
w denotes angular frequency, K, and K, de- 
note the longitudinal wave modulus for air 
and solid, respectively, and p, and p2 are the 
mass densities. At sonic frequencies, where 
the slab thickness d is much smaller than the 
longitudinal sound wavelength in solid (so 
that k2d << 1 and v >> I), an accurate 
approximation to Eq. 1 is given by 

Fig. 2. Calculated displacement configurations 
at the first (A) and second (B) dip frequencies. 
The displacement shown is for a cross section 
through the center of one coated sphere, locat- 
ed at the front surface. The arrows indicate the 
direction of the incident wave. 
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Equation 2 is independent of K,, implying 
that the value of T given by the mass-
density law is essentially the limit for K, + 
m. This equation is conventionally known 
as the mass (area) density law for sound 
shielding/transmission in the absence of ab- 
sorption. It states that for a given level of 
sound transmission amplitude, the required 
mass area density is inversely proportional 
to the frequency. 

Equation 2 was used to calculate the 
transmission coefficient for a 2.1-cm layer 
of epoxy (Fig. 3, dashed line). Using Eq. 1 
for the same calculation leads to essentially 
the same result. We have also calculated 
the mass-density law for the composite 
sample by using the average density, which 
is somewhat higher than that of epoxy (Fig. 
3, dot-dashed line). Thus, our composite 
sample, with one layer of the coated 
spheres, breaks the mass-density law by at 
least one order of magnitude at the first dip 
frequency. For comparison we have also 
calculated, using an equation slightly more 
complicated than Eq. 1 ( l o ) , sound trans- 
mission through a layered epoxy-silicone 
rubber-lead-silicone rubber-epoxy medi-
um, with the same volume fractions of the 
three components as in the 2.1-cm random 
composite sample. The results show large 
transmission peaks due to the soft rubber 
layers, but the transmission minima are 
always equal to or larger than that given by 
the mass-density law. These comparisons 

Fig. 3. Measured amplitude transmission (solid 
circles; the solid line is a guide t o  the eye) 
through a 2.1-cm slab of composite material 
containing 48 volume % of randomly dispersed 
coated lead spheres in an epoxy matrix. As a 
reference, the measured amplitude transmission 
through a 2.1-cm slab of epoxy is also plotted 
(open squares connected by a thin solid line). 
The dashed and dot-dashed lines, respectively, 
show the calculated transmission amplitudes of 
a 2.1-cm epoxy slab and a 2.1-cm homogeneous 
slab of the same density as that of the compos- 
ite material containing the coated spheres. The 
two arrows indicate the dip frequency positions 
predicted by the multiple-scattering calculation 
for a monolayer of hexagonally arranged coated 

show that the locally resonant microstructure 
is crucial for the observed dip characteristic. 

We have also calculated the frequency 
positions of the transmission dips, using 
our multiple-scattering code, for a mono- 
layer of coated lead spheres arranged in 
a two-dimensional hexagonal lattice, with 
the concentration and other parameters the 
same as the random composite used in 
the experiment. The results (Fig. 3, arrows) 
are in reasonable agreement with the exper- 
iment. The most notable difference be- 
tween the ordered and random arrange-
ments of coated spheres is that in the ran- 
dom case, the resonant transmission peaks 
are absent. 

Equation 1 can be used in conjunction 
with the transmission data (Fig. 3) to do 
inversion for the effective K, of a slab of 
homogeneous medium with the same trans- 
mission characteristics. By letting p, = p, 
be the average mass density of the sample, 
an effective K,, here denoted by K,, was 
obtained. Away from the resonances, K, has 
a value very similar to that of epoxy (and 
hence 1 / ~ ,  is fairly small) (Fig. 4). How-
ever, close to the resonances the modulus 
actually turns negative (with ~ I K ,  = 0 de-
fined by the amplitude transmission value 
given by the mass-density law). It is thus 
not surprising that the composite sample 
can break the mass-density law, because 
the material behaves like a total reflector. 
This is analogous to the reflection of elec- 
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spheres in an epoxy matrix. For reference, at 400 Hz the sonic wavelength in air is about 80 cm. 

Fig. 4. The frequency-dependent effec- 
tive longitudinal elastic modulus K, in-
vetted from the amplitude transmission 
data shown in Fig. 3 (solid line) using Eq. 
1. Open circles denote the measured 
phase of the transmission coefficient, 
with zero phase set arbitrarily. Undula- 
tions in the measured phase are due to  
noisy data. 

2 

0.0 

3 -0.1 0 --
0 

g -0,2 	 m-	 c .r2 	 -2 

-0.3 

Frequency (Hz) 

tromagnetic waves (11) by a material hav- 
ing a dielectric constant that is real and 
negative. 

Although the static elastic constant must 
be positive for maintaining structural stabili- 
ty, resonance-induced negative elastic con-
stants should be possible, as demonstrated 
here at low sonic frequencies. This conclu- 
sion is further supported by the measured 
phase of the transmission signal (Fig. 4, open 
circles). In the region of positive K,, the phase 
is relatively constant because away from the 
resonance, the wavelength is much larger 
than the sample thickness. Coinciding with 
the frequencies where the computed l l ~ ,  
crosses zero, there are observed 180" phase 
jumps, giving direct evidence for the under- 
lying resonance mechanism. Extension to 
lower and higher frequency elastic wave sys- 
tems may lead to applications in seismic 
wave reflection and ultrasonics. 
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