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modified RNAs were also observed. We 

Generation of G-to-A and found no modifications in the 5' trans-activa-
tion responsive region of HIV-1 RNA, which 

C-to-U Changes in HIV-1 has been reported to be edited by double-
stranded RNA adenine deaminase after injec-
tion into Xenopus oocytes (16).

Transcripts by RNA Editing TO test whether RT-PCR might have gen-
erated the observed changes, we used a 

K. Bourara, S. Litvak, A. Araya* genomic fragment spanning the viral infec-
tivity factor (vif)-vpr region (nucleotides 

RNA editing involves posttranscriptional alterations of messenger RNA (mRNA) 5029 to 5385) to synthesize sense and anti-
sequences modifying the information content encodedby the genetic message. sense RNAs (17), which were subjected to 
Here, it is shown that, inchronically infected H9cells, humanimmunodeficiency RT-PCR, cloned, and sequenced. From 20 
virus-type 1 (HIV-1) mRNAs undergo guanine-to-adenine (C-to-A) and cy- independent clones analyzed, neither the 
tosine-to-uracil (C-to-U) changes. C-to-A modification in the untranslated sense nor the antisense RNAs were modified, 
region of exon 1was present only in spliced HIV-1 mRNAs. The creation of stop showing that neither reverse transcription, 
codons in HIV-1 mRNAs may function to  control the translation of viral pro- DNA synthesis, nor a specific template (hot 
teins, such as viral protein R, that are involved in the regulation of HIV-1 spots) caused the base changes observed in 
expression and the survival of chronically infected cells. retroviral -As. 

HIV-1 DNA synthesis is characterized by 
Retroviruses display a complex pathway of chain reaction (RT-PCR) (Fig. lB), cloned, a high mutation rate, particularly in G-to-A 
gene expression controlled by viral- and cel- and sequenced. We detected several base changes (18, 19). To determine if RNA mod-
lular-encoded regulatory proteins with impli- changes in the 5' noncoding and vpr sequenc- ifications were the result of an RNA editing 
cations in pathogenesis (1, 2). At the transla- es in the viral mRNAs, relative to the genom- event, we analyzed the sequences of (i) viral 
tional level, overlapping reading frames are ic sequence (IS). G-to-A changes were ob- mRNA transcripts, (ii) integrated proviral 
resolved by ribosomal frameshift and read- served at positions 181, 5301, and 5363, and DNA, and (iii) encapsidated genomic RNA, 
through (3). At the transcriptionallevel, RNA a C-to-U change was observed at position using primers 6 and 7. These primers amplify 
editing provides yet another mechanism for 5396 (Fig. 2A). Partially modified and un- all mRNAs containingthe vif-vprORFs. Four 
controlling viral gene expression through 
posttranscriptional modifications of mRNAs 
that introduce amino acid changes or initia- A Fig. 1.(A) Scheme of the 

tion or termination codons (4-9). 
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Table 1. RNA editing frequency in mature and unspliced HIV-1 mRNAs. Data are shown for base changes Table 2. Base changes in vif and vpr mRNAs 
in vpr-containing mRNAs after RT-PCR with primers 1 and 6. The number of edited molecules out of the analyzed with primers 5 and 6 and primers 7 and 
number of analyzed clones is indicated. 6, respectively. 

Base Residue tat1 ta t Z  vif Unspliced Base Residue 
change number VPr mRNA change number VPr vif 

G + A  181 8/10 617 011 515 0118* C + U 5396 511 1 9110 
G + A  5301 - - 011 515 9110t G + A  181 511 1 * 5/7* 
G + A  5363 718 517 011 515 9110t G + A  5301 511 1 8110 
C + U  5396 718 517 011 515 9110t G + A  5363 511 1 9110 

*RNA editing was analyzed with primers 1 and 2. tRNA editing was analyzed with primers 3 and 9. *RNA editing was analyzed with primers 1 and 4. 

kinds of mRNAs were found: 13 out of 30 
RNAs were nonmoclified, 4 out of 30 were 
modified at site 5301, 1 out of 30 was mod- 
ified at sites 5363 and 5396, and 12 out of 30 
were modified at all sites (Fig. 2, A and B). 
One explanation is that at least four different 
proviruses are present in the nuclear genome. 
To test this, we performed PCR experiments 
on genomic DNA. None of the 11 clones 
analyzed showed sequence changes, indicat- 
ing that the observed modifications derive 
from viral transcripts of one provirus. This 
conclusion was confirmed by Southern blot 
analysis of total DNA using pol- and env- 
specific probes (20, 21). 

Next, we analyzed the full-length, unspliced 
genomic RNA from virions produced by the 
infected H9 cells to determine if RNA poly- 
merase I1 (RNA Pol 11) generated these 
changes (20). The viral genome is the prima- 
ry product of RNA Pol I1 and is indistinguish- 
able from the mRNA assigned to translation, 
except that the former is encapsidated and the 
latter is engaged in RNA splicing and trans- 
lation (22). If base changes occur cotranscrip- 
tionally, viral particles produced by infected 

cells should contain either unmodified or 
modified genomic RNA. None of the 24 
independent clones analyzed showed base 
changes. Thus, RNA editing modifications 
are restricted to transcripts intended for pro- 
cessing and translation, suggesting that edit- 
ing allows a distinction between two primary 
transcript pools. Whether the edited RNA is 
chosen for translation or precluded from en- 
capsidation remains to be determined. 

The changes at positions 5301,5363, and 
5396 are in the vpr ORF and affect codons 
that are highly conserved in various strains of 
HIV-1 and simian immunodeficiency virus- 
CPZ. The G-to-A (position 5301) change 
generated a stop codon, whereas a Gly 
(GGG) triplet is changed into an Arg (AGG) 
codon at position 5363 (21). Both sites were 
embedded in a TTGGG motif (underline in- 
dicates edited residue), but no consensus was 
found in surrounding sequences, nor were 
consistent secondary structures evident in 
these regions. The C-to-U (position 5396) 
change, which was always associated with 
the G-to-A (position 5363) modification, gen- 
erated a stop codon (UAG) from a Gln (CAG) 

triplet. C-to-U transitions have been observed in 
the editing of apolipoprotein B (apoB) mRNA 
(9, 23). The sequence in the vicinity of the C 
residue in vpr mRNA is different from that 
involved in apoB editing, suggesting that 
both systems operate differently. 

The result obtained with primers 6 and 7 
does not discriminate between the different 
transcripts. In HIV-1, >30 different RNA mol- 
ecules arise from a full-length transcript 
through highly regulated splicing events (22). 
We analyzed spliced mRNAs containing the 
vpr ORF using RT-PCR instead of other ap- 
proaches, such as primer extension. We did so 
because RT-PCR reveals the status of each 
editing site in individual alternatively' spliced 
transcript. Moreover, primer extension is not 
well adapted for sites embedded in TGGG se- 
quences. At least five mRNAs [trans-activator 1 
(tatl), tad, tat3, vpr, and vzfl differing in exon 
composition can be examined with primers 1 
and 6 (Fig. 1B). From 130 clones analyzed, 
most corresponded to tatl and tat2 mRNAs; 
five clones contained v f  mRNA, and one 
corresponded to vpr mRNA. No tat3 mRNA 
molecules were detected (Tables 1 and 2). 
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Provirus vprrnRNA vifrnRNA Provirus vprrnRNA unedited tat 1 edited tat 1 edited tat 2 

Fig. 2. (A) Sequence analysis of vpr and vifmRNA and the corresponding proviral regions. The exon junctions of the respective mRNAs are indicated. 
Editing sites are shown by arrowheads. (B) Editing sites 181 and 5363 in tat mRNAs. tatl and tat2 are identified by the exon composition. The antisense 
strand is shown. All nucleotide positions correspond to the viral genome numbering, irrespective of splicing (75). 
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All vifand >90% of tat1 and tat2 clones 
showed changes at residues 5301, 5363, and 
5396 (Table 1 and Fig. 2, A and B); site 5301 
is missing from tat mRNAs because exon 4 
begins at residue 5359. To increase the num- 
ber of vifand vpr clones, we amplified PCR 
products obtained with primers 1 and 6 by 
using specific primers (Fig. 1C and Table 2). 
All three changes were found in 4 out of 11 
and 8 out of 10 vpr and vifclones, respec- 
tively, whereas partially edited clones con-
taining the changes 5363 and 5396 were found 
in 1 out of 11 vpr and 1 out of 10 vfclones. 
Unspliced mRNAs, amplified with primers 3 
and 9, showed that 9 out of 10 clones carried 
all three changes (Table 1). The vpr ORF in 
unspliced mRNAs also had stop codons gen- 
erated by RNA editing, thereby reducing the 
possibility of producing VPR by ribosomal 
scanning (3, 24). 

RNA editing may control alternative splic- 
ing of HIV-1 mRNAs by creating the splicing 
silencing sequence TAGG (25) from TGGG 
in exon 3A of vpr mRNA. That could account 
for the low levels of vpr mRNA found in 
chronically infected H9 cells. The absence of 
tat3 mRNA in the analyzed clones supports 
this idea because tat3and vpr mRNAs share 
the same splicing acceptor site (26). Our 
attempts, using polyclonal antibodies, to de- 
tect truncated VPR resulting from newly gen- 
erated termination codons were unsuccessfiil. 
It is unclear if this is due to an inherent 
instability or a low rate of production. In any 
case, reduced VPR expression resulting from 
the creation of stop codons and the decrease 
of spliced mRNA levels could explain how 
chronically infected H9 cells, in contrast with 
other systems, conserve an intact vpr ORF 
(13). 

Residue G at site 18 1 in the leader region 
of exon 1, common to all viral mRNAs, was 
analyzed in tat, vif; vpr, and unspliced mRNAs. 
The G-to-A transition at site 181 was found 
with a high frequency in processed mRNAs but 
was absent from unspliced transcripts (Tables 1 
and 2), suggesting that RNA editing of the vpr 
ORF and the leader region occur independently. 
Site 181 is not embedded in a sequence resem- 
bling the target TTGGG present at sites 5301 
and 5363. The importance of the change at 
site 18 1, located at position +1 of the tRNA 
primer binding site, is not clear. It has been 
proposed that nucleotide substitutions in the 
U5 region are critical for efficient reverse 
transcription (27). RNA editing in this leader 
sequence would generate an BUG initiation 
triplet from GUG, upstream from the start 
codons of tat, vif, and vpr mRNAs, which 
could affect translation of the corresponding 
ORFs (3, 24). A preliminary search for edit- 
ing in other mRNAs has not yielded consis- 
tently altered sites, except for vz'f" mRNA, 
which presents two G-to-A changes at posi- 
tions 4800 and 4831 in sequences TAGGG 

and TTGGG, respectively (21). This region is 
spliced out in all other mature mRNAs. 

C-to-U changes in HIV-1 RNA may occur 
by deamination, as shown in apoB mRNA 
(23) and plant mitochondria1 RNA editing 
(28), but G-to-A changes are difficult to ex- 
plain by a one-step mechanism. The nature of 
the editing products remains to be deter-
mined. Results presented here reflect the 
Watson-Crick base-pairing rules that operate 
during DNA synthesis, RT-PCR, and se-
quencing protocols and do not necessarily 
describe the chemical identity of the modified 
residue. It cannot be ruled out that the RNA 
editing activity generates a residue such as 
2,6-diaminopurine from G, which would be 
able to base pair like an A (29, 30). Other ' 5  

mechanisms (transglycosylation and nucleo- 16, 

tide exchange, for example) cannot be ex-
cluded. Another possibility is that these 
changes are C-to-U modifications in an anti- 

17, 

sense RNA; however, using different ap-
proaches, we found no evidence for such 
antisense RNAs in the regions analyzed. 18. 

G-to-A and, to a lesser extent, C-to-U 
modifications are observed in HIV-1 mRNA 19 

of chronically Infected cells. Because these -".,,
modifications are specific to mRNAs en-
gaged in viral gene expression and are not 
observed in either genomic viral RNA or 
proviral sequences, RNA editing may play a 
role in the modulation of HIV-1 gene expres- 
sion. We are currently trying to extend this 
observation by obtaining clonal cells from 
infected Individuals to ascertain whether the 
changes described here in a cultured clonal 
line can be correlated to the HIV life cycle in 
vivo. 
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