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The regulatory protein NEMO (also named 
IKK7) is required for proinflammatory ac­
tivation of the iKB-kinase (IKK) complex 
(1-5). We surmised that prevention of the 
NEMO-IKK interaction would inhibit sig­
nal-induced NF-KB activation and, there­
fore, attempted to identify the mechanism 
of interaction between NEMO and IKKp. 
We analyzed the interaction of NEMO 
fused at its NH2-terminus to glutathione 
S-transferase (GST-NEMO, see Fig. 1A) 
with IKKp mutants lacking the catalytic, 
leucine zipper, and helix-loop-helix (HLH) 
domains [Fig. 1A and (6)]. None of the 
mutants interacted with GST, whereas all 
three COOH-terminal fragments (307-756, 
458-756, and 486-756) interacted with 
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GST-NEMO [Fig. 1A and (7)]. None of the 
NH2-terminal fragments (1-458, 1-605, or 
1-644) precipitated with GST-NEMO, 
demonstrating that NEMO interacts with 
the COOH-terminus of IKKp distal to the 
HLH. An IKKp mutant consisting of only 
residues 644 to 756 associated with GST-
NEMO, confirming that this region medi­
ates interaction between the molecules 
(Fig. IB). Furthermore, IKKp(644-756) 
dose-dependently inhibited cytokine-in-
duced NF-KB activation in transfected 
HeLa cells [Fig. 1C and (6, 8)]. The most 
likely explanation for this result is that 
overexpressed IKKp(644-756) associates 
with endogenous NEMO and prevents re­
cruitment of regulatory proteins to the 
IKK-complex. 

To identify the domain of NEMO (1-3, 9) 
required for association with IKKp, we ana­
lyzed the interaction of GST-IKKP(644-
756) with truncation mutants of NEMO 
(Fig. ID). IKKp(644-756) associated with 
NEMO fragments 1-196, 1-302, and 4 4 -
419 but not 197-419 or 86-419, indicating 
that the interaction domain lies between 
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residues 44 and 86. A deletion mutant lack­
ing this a-helical region (residues 50-93, 
del.aH) did not interact with IKKp(644-
756) (Fig. IE) and inhibited tumor necrosis 
factor-a (TNF-a)-induced NF-KB activity 
(Fig. IF), confirming the dominant-nega­
tive effects of the NEMO COOH-terminus 
(2, 3). These findings suggest that the NH2-
terminus of NEMO anchors it to the IKK-
complex, leaving the remainder of the mol­
ecule accessible for interacting with regu­
latory proteins. 

The IKKp COOH-terminus contains a 
region with identity to IKKa (denoted a J , 
a serine-rich domain (10), and a serine-free 
region (Fig. 2A). Analysis of IKKp mu­
tants omitting each of these segments indi­
cated that NEMO associates with the 
COOH-terminus after residue 734 (Fig. 
2A). The region of IKKp from F734 to 
T744 [a2 in Fig. 2B (11)] contains a seg­
ment that is identical to the equivalent 
sequence in IKKa. The IKKp sequence 
then extends for 12 residues forming a 
glutamate-rich region (Fig. 2B) that we 
speculated would be the NEMO interaction 
domain. However, a truncation mutant 
omitting this region (1-744) associated 
with GST-NEMO (Fig. 2C). Thus, the 
NEMO-interaction domain of IKKp ap­
pears to be within the a2-region of the 
COOH-terminus. 

We next used the IKKp(l-744) and ( 1 -
733) mutants to determine the effects of 
NEMO association on IKKp activity and 
found that IKKp(l-733) induced NF-KB ac­
tivation that was approximately 1.5 to 2 times 
that induced by wild-type IKKp (Fig. 2D). 
Furthermore, NF-KB activity induced by 
IKKp( 1-744) was identical to that induced 
by wild-type IKKp. Thus, NEMO may main­
tain basal IKKp activity as well as regulate 
its signal-induced activation. 

Because the a2-region of IKKp resem­
bles the COOH-terminus of IKKa (Fig. 
2B), we tested the ability of IKKa to inter­
act with NEMO (7). IKKa and IKKp ex­
pressed in wheat germ extract both associ­
ated with GST-NEMO demonstrating that 
the individual interactions are direct (Fig. 
3A). Further analysis revealed that IKKa 
interacts with NEMO through the COOH-
terminal region containing the six amino 
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acids shared with the a,-region of IKKP 
(Fig. 3B). In contrast, the IKK-related ki-
nase IKKi (12), which does not contain an 
a,-homologous region, failed to interact 
with NEMO (7). Gene-targeting has dem-
onstrated a profound difference between 
IKKa and IKKP activation by TNF-a (13). 
Our findings suggest that this difference is 
not due to differential interaction with 
NEMO. 

A mutant of IKKP lacking the six a,-
region residues did not associate with GST-
NEMO (Fig. 3C). Therefore, we have named 
this sequence the NEMO-binding domain 
(NBD) (7). We examined the effects of point 
mutations within the NBD and found that 
replacement of D738, W739, or W741 with 
alanine prevented association with NEMO 
(Fig. 3D). In contrast, replacement of L737, 
S740, or L742 with alanine did not affect 
NEMO binding (Fig. 3D). To test the effects 
of these mutations on IKKP function, we 

R E P O R T S  

measured NF-KB activation in transfected 
HeLa cells. Consistent with previous results 
(Fig. 2D), mutants that did not bind NEMO 
activated NF-KBto a greater extent than did 
wild-type IKKP or IKKP(1-744), whereas 
NEMO-binding mutants activated to the 
same level as t'he controls (Fig. 3E). These 
data strongly support the hypothesis that 
NEMO plays a role in the down-regulation of 
IKKP activity. 

The ability to selectively inhibit NF-KB 
activation induced by proinflammatory cyto-
kines may be crucial for the treatment of 
inflammation. However, inhibitionof the cat-
alytic activity of the IKKs may block basal 
NF-KB activity and impair its function as a 
survival factor, leading to potentially toxic 
side effects. We reasoned that a more effec-
tive anti-inflammatory drug might result from 
blocking the interaction of NEMO with the 
IKK complex. Therefore, we designed cell-
permeable peptides (11, 14) spanning the 

IKKP NBD and determined their ability to 
disrupt the IKKP-NEMO interaction. The 
wild-type NBD peptide (Fig. 4A) consisted 
of the region from T735 to E745 of IKKP 
fused with a sequence derived from the An-
tennapedia homeodomain that mediates 
membrane translocation (15). The mutant 
peptide was identical except that W739 and 
W741 in the NBD were mutated to alanines 
(Fig. 4A). Only the wild-type NBD peptide 
dose-dependently inhibited in vitro interac-
tion of IKKP with NEMO (Fig. 4B). Further-
more, after incubating HeLa cells with the 
peptides, the wild-type, but not the mutant, 
NBD peptide disrupted formation of the en-
dogenous IKK complex (Fig. 4C). 

The effects of the NBD peptides on IKK 
activation were determined by irnrnune-com-
plex kinase assays (16) by using IKK com-
plexes precipitated from TNF-a-stimulated 
HeLa cells pretreated with peptides. The 
wild-type, but not the mutant, peptide de-

Fig. 1. Interaction of 
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interleukin (IL)-1P (10 nglml) (shaded) for 4 hours, and luciferase 
activity was measured (8).lmmunoblot analysis using anti-xpress 
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GST and CST(644-756) were separated by SDS-PACE (10%) INPUT B 
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mutants are indicated (+).None of the mutants interacted with GST (77). (E) Wild-type NEMO and a mutant lacking the first a-helical region 
(del.aH)were expressed (input) and used for pull-down analysis by using the proteins in (D, left). (F) NF-KBactivity (8)in HeLa cells transfected 
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creased TNF-a-induced IKK activity [Fig. (7). Electrophoretic mobility shift analysis 
4D and (7)],whereas neither peptide inhibit- (EMSA) demonstrated that only the wild-
ed TNF-a-induced phosphorylation of c-Jun type peptide inhibited TNF-a-stimulated nu-
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(I-733), the serine-free region (I-707), the serine rich-domain Y 

(1-662), and the a, region (1-644) were used for pull-down Y 
analysis by GST-NEMO (Fig. 1A). None of the mutants interactedwith GST (77).(B) Comparison of the 
COOH-termini of lKKa and IKKP indicating the a, and glutamate-rich regions and the six identical 
amino acids (shaded). (C) Wild-type IKKP and the truncation mutants (1-733 and 1-744, input) were 
used for in vitro pull-down analysis with either GST or GST-NEMO. (D) NF-KB activity in HeLa cells 
transfected with 1 pglml of the indicated constructs or vector (pcDNA-3) together with pBIIX-
luciferase (8). 

INPUT INPUT INPUT 

IKKR del.NB0 

Fig. 3. The NBD consists of six COOH-terminal amino acids. Pull-down analysis was done by 
using CST-NEMO and either (A) IKKa and IKKP in vitro translated in wheat germ extract, (B) 
wild-type IKKa and IKKu(1-737), or (C) a deletion mutant of IKKP lacking the NBD (del.NBD). 
(D) COS cells were transfected for 48 hours with 1 pglml of pcDNA3.1-xpress (vector), vector 
plus NEMO-FLAG, or NEMO-FLAG plus xpress-tagged IKKP(1-744) containing NBD point 
mutations (25). After lysis, samples were immunoprecipitated by using anti-FLAG (M2) and 
immunoblotted with anti-FLAG or anti-xpress. The expression level in lysates before immuno-
precipitation was determined by immunoblottingwith anti-xpress (lower panel). (E) HeLa cells 
were transfected for 48 hours with the indicated constructs together with pBI1X-luciferase, and 
NF-KB activity was measured (8). 

clear translocation of NF-KB in HeLa cells 
(Fig. 4E), whereas neither peptide affected 
DNA binding of the transcription factor 
Oct-1 (17). Furthermore, the wild-type NBD 
peptide inhibited TNF-a-induced NF-KBac-
tivity (Fig. 4F, upper panel). Basal NF-KB 
activitywas enhanced approximately twofold 
by the wild-type peptide (Fig. 4F, lower pan-
el), suggesting that removal of NEMO slight-
ly increases the basal, intrinsic activity of the 
IKK complex while abolishing its respon-
siveness to TNF-a. 

Many genes involved in inflammation 
are regulated by NF-KB(18). E-selectin is a 
leukocyte adhesion molecule expressed by 
vascular endothelial cells after activation 
by proinflammatory cytokines (19). To as-
sess the anti-inflammatory potential of the 
NBD peptides, we pretreated human umbil-
ical vein endothelial cells with the peptides 
then induced E-selectin expression with 
TNF-a. The wild-type peptide caused low-
level expression of E-selectin (Fig. 5A). 
However, TNF-a-induced E-selectin was 
diminished in cells treated with wild-type, 
but not mutant, peptide (Fig. 5A). The 
wild-type NBD peptide also inhibited LPS-
induced nitric oxide (NO) release from a 
macrophage cell line (7). 

The effects of the NBD peptides in vivo 
were tested in two distinct experimental 
mouse models of acute inflammation. Ear 
edema induced with phorbol 12-myristate 13-
acetate (PMA) (20, 21) was reduced by the 
wild-type peptide (77 2 3% inhibition) as 
effectively as dexamethasone (82 ? 9% in-
hibition), whereas the mutant was less effec-
tive (27 + 9%) (Fig. 5C). Neither peptide had 

3 + NEMO-FLAG 

IP: antl-FLAG 
IB: antl-xpress 
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any effect in the absence of PMA (17). In either alone or in combination with dexa-
another model, peritonitis was induced in methasone or the NBD peptides (22, 23). 
mice by intraperitonealinjection of zymosan, Zymosan injection caused accumulation of 

A 
wild type: drqiklwfqnrrmkwkkTALD&S~LQTE 

mutant: drqikiwfqnnmkwkkTALDASALQTE 

inflammatoryexudate fluids and migration of 
polymorphonuclearcells into the peritoneum 
that was inhibited by dexamethasone and the 
wild-type, but not the mutant, NBD peptide 
(Fig. 5D). Dexamethasone and wild-type 
peptide also reduced NO accumulation in the 
peritoneum of these animals (7). We there-
fore concludethat the wild-type NBD peptide 
is an effective inhibitor of inflammation in 
these experimental models. 

In summary, we have identified the struc-
tural requirements for the association of 
NEMO with the IKKs and revealed that 
NEMO not only functions in the activation of 

I,/+ + TNFa 

66 IKKP (I-5), but may also suppressthe intrin-
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Predictions of Biodiversity 
Response to Genetically 

Modified Herbicide-Tolerant 
Crops 

A. R. Watkinson,"* R. P. ~reckleton,'t R. A. Robinson,' 
W. J. Sutherlandl 

We simulated the effects of the ihtroduction of genetically modified herbicide- 
tolerant (CMHT) crops on weed populations and the consequences for seed- 
eating birds. We predict that weed populations might be reduced t o  low levels 
or practically eradicated, depending on the exact form of management. Con- 
sequent effects on the local use of fields by birds might be severe, because such 
reductions represent a major loss of food resources. The regional impacts of 
CMHT crops are shown t o  depend on whether the adoption of CMHT crops by 
farmers covaries with current weed levels. 

There is a growing research interest in the to be set within a biodiversity landscape that 
potential effects o f  the release o f  genetically is already affected by  the intensification o f  
modified (GM) crops (I) on biodiversity. agriculture (2). Although, in some senses, the 
This is prompted by concerns relating to the introduction o f  GM crops may be no different 
direct impact o f  GM crops on target organ- than the introduction o f  any other technology 
isms and the indirect effects on the wider that leads to the further intensification o f  
environment. The environmental debate has agriculture, this new technology might offer a 
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