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gomers (/, 2). Molecular relations of proteins of 
the histidine and tryptophan biosynthesis path­
ways were postulated by structure prediction 
(3) and multisequence alignment methods (4). 
Many proteins in these pathways and other 
biological processes are folded as eightfold p/a 
barrels (5, 6). Their evolution has been dis­
cussed (7, 8) and has recently been mimicked in 
a directed evolution experiment (9). Here, we 
compare atomic structures of two enzymes in 
the histidine biosynthesis pathway and provide 
evidence for the evolution of p/a barrels from 
an ancestral half-barrel. The observation that 
ancestral folding units may comprise subdo-
main structural units has broad applications in 
searching genomic sequences for related gene 
products and their functional interactions in bi­
ological processes (2, 10-12). 

The crystal structures of the monomelic 
gene products HisA and HisF from the hyper-
thermophile Thermotoga maritima were deter-
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mined at 1.85 and 1.45 A resolution, respec- 
tively, using multiwavelength anomalous dis- 
persion (MAD) phases of crystals with sel- 
enomethionine-substituted sequences (Table l) 
(13). HisA and HisF share about 25% sequence 
identity (14, 15) and catalyze two successive 
reactions in histidine biosynthesis (16). HisA 
converts N-[(5'-phosphoribosy1)-formimino]- 
5-aminoimidazol-4-carboxamid ribonucleotide 
(ProFAR) into the 5'-phospboribulosyl isomer 
(PRFAR). HisF is part of a heterodimeric com- 
plex, which is a glutamine amidotransferase 
comprising the synthase subunit HisF and the 
glutaminase subunit HisH. HisF catalyzes the 

condensation of PRFAR and ammonia, which 
is provided by HisH, followed by the cleavage 
of the condensation product into 5-aminoimida- 
zole-4-carboxamide ribotide (AICAR) and imi- 
dazoleglycerol phosphate (ImGP) (16). The 
HisF:HisH complex is a branch-point enzyme, 
because its two products ImGP and AICAR are 
further used in histidine biosynthesis and in the 
de novo purine biosynthesis, respectively. 

The x-ray structures of HisA and HisF show 
that both enzymes are folded as plol barrels 
(Fig. I), as predicted (3, 4). Most P strands of 
each central p barrel are short (4 to 5 residues), 
except pl  and P5 (9 to 11 residues). The active 

Side view 

sites in both enzymes are located at the COOH- 
terminal face of each p barrel, as indicated by 
the location of clusters of invariant residues in 
multiple sequence alignments (15) and the pres- 
ence of two phosphate ions in the HisF struc- 
ture, mimicking the two phosphate moieties of 
the HisF substrate (Fig. 1). The loops at the 
w-terminal face of each P barrel are gener- 
ally short and without any specific features. In 
contrast, several loops at the COOH-terminal 
face of the P barrel form extensive structures in 
both HisA and HisF. 

In both enzymes, the loops at the COOH- 
terminal face display a twofold repeated struc- 

Table 1. X-ray data collection and phasing statistics. 

- C@ HisA 

NH, -terminal 
I HisF 

Fig. 1. Atomic structures 
of HisA (upper panel) and 
HisF (Lower panel) from 
Thermotoga maritima in 
ribbon presentations (29). 
View from the COOH-ter- 
minal face of the central p 
barrel, left; side view, cen- 
ter; and view from the 
NH2-terminal face of the 
barrel, right. HisF contains 
two phosphate ions bound 
to  the active site, shown 
as space-filling models 
(red).  he p strands and a 
helices of the central 
eightfold P/ol barrel are in 
orange and yellow, respec- 
tively. Loops at the NH2- 
and COOH-terminal faces 
of the barrel are in cyan 
and green, respectively. 
Some loops contain addi- 
tional secondary structural 
elements. The NH - and 
COOH-termini are fabeled 
when visible. 

Crystal d(min) No. 
A ( 4  (A) 

Comp.* Multi- I lu Phasing 
data (%I plicity (last shell) Rsymt (%I x2$ ' c u ~  

X-ray data collection 
99.1193.8 10.4 
99.2193.6 10.4 
98.8192.6 9.7 
97.4 5.8 
99.1191.6 8.7 
99.2192.8 9.7 
98.6191 .O 7.5 
95.1 6.0 

Crystal Protein atoms Solvent atoms Ligand atoms rmsd bond rmsd bond RC& 
length (A) angles (") (%I 

Structure refinement 
HisA 3798 547 0 0.005 1.28 18.8 24.6 20.8 
HisF 1961 304 10 0.006 1.35 17.8 21.4 16.7 

*Completeness of unique datalfriedel pairs. tR,, = P,,P,ll,(hkl) - (I(hkl))lL,,L,/,(hkl). $Weighted error estimate, as defined in the DENZO package (13). $Phasing power 
is defined as the ratio of the rms value of the heavy-atom structure factors amplitudes and the rms value of the lack-of-closure error. Statistics are on acentric data and their anomalous 
values. IIR,[,i, is the mean lack-of-closure error divided by the isomorphouslanomalous difference. Statistics are on acentric data and their anomalous values. nRq, and R,,, = 
LIFO,, - F,,cIIZF,,; R,,, is calculated with 5% of the data that were not used for refinement. 
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tural pattern (Fig. 2), prompting a fourfold com-
parison of the NH,-terminal halves (HisA-N, 
HisF-N) and the COOH-terminal halves (HisA-
C, HisF-C) of each ICY barrel. The first loop in 
each half-barrel (pink loops 1 and 5) is approx-
imately 20 residues long. It immediately turns 
and forms a small antiparallel P sheet with the 
COOH-terminus of the preceding long P strand 
1 or 5 of the barrel (except in HisF-N). In each 
of the two enzymes, these loops 1 and 5 form 

Table 2. Structure and sequence similarities of 
half-barrels. The rms deviations for each pair of 
superimposed half-barrels are given in the upper 
right of the matrix. The percentage of identical 
residues of each structure-based pair-wise se-
quence alignment is given in the lower left of this 
matrix. The calculations were carried out with the 
program ALIGN-PDB (28),using all main-chain, 
nonhydrogen atoms for finding the optimum 
structuralsuperposition. 

the cleft of the active site. The next loop in each 
half-barrel (blue loops 2 and 6) contains a short 
one-turn helii (except in HisF-N). It is followed 
by a short loop (cyan loops 3 and 7) with a fixed 
length of five residues. The last loop in each 
half-barrel (green loops 4 and 8) contains anoth-
er one-and-a-half turn helix. The presence of 
two phosphate ions in HisF, bound to loops 3 
and 4, and 7 and 8, respectively, indicates a role 
of these loops in binding of the phosphate moi-
eties of the respective substrates, as observed in 
other known pla barrel enzymes (17). 

The half-barrel structures superimpose with 
rms deviations of 1.5 to 2.0 A (Table 2). A 
structure-based sequence alignment of HisA-N, 
HisF-N, HisA-C, and HisF-C (Fig. 2B) reveals a 
number of residues that are not only invariant 
among the known sequences of each enzyme 
(15) but are located at structurally identical po-
sitions in all four half-barrels. There are two 
residues at the first loop of each barrel, an 
aspartate and a valine, that are invariant in all 
four half-barrel sequences. The position of each 
aspartate in the center of the active sites of HisA 
and HisF indicates a role in the catalytic func-
tions of these enzymes(Fig. 2A). The role of the 
invariant valine is to position the NH,-terminus 

of loops 1 and 5 onto the surface of the PIa 
barrel. In addition, there are three invariant gly-
cine positions, one in a loop at the NH,-terminal 
face connectingthe first a helix (alla5) and the 
second p strand (pUp6) of each half-barrel, and 
two in a GG motif in the third loop of the 
COOH-terminal face of each half-barrel. The 
overall fourfold alignmentunambiguouslyiden-
tifies 22% (19 of 87) identical or similar resi-
dues (Fig. 2B), revealing a sequence and struc-
tural pattern that is common to the two barrel 
halves of the two enzymes. 

These structural data strongly suggest evo-
lution of HisA and HisF from a single common 
ancestral half-barrel, supporting previous pro-
posals (14, 15). The complete conservation of 
an aspartate in the active sites in all four half-
barrel sequences (Fig. 2B) suggests an evolu-
tionary process through a broad functionality 
pla barrel ancestor in which this residue could 
have played distinct roles in different catalytic 
mechanisms. This has prompted us to test HisA 
and HisF for their mutual residual activities 
(18). Indeed, HisF displays significant catalytic 
HisA activity, with a kc,JKMPRFAR(specificity 
constant for PRFAR) of 0.1 rnM-' s-' at 
25°C. This activity is lost, however, in either of 

Fig. 2. Comparativeanal-
ysis of HisA and HisF. (A) 
Surface presentation of 
HisA and HisF viewed 
from the COOH-terminal 
face of the P/a barrel 
containing the active site 
(29). The view is as in left 
panels of Fig. 1. The sur-
face areas covering the p 
strands and the a helices 
of the p/a barrel are 
numbered and colored in 
orange and yellow, as in 
Fig. 1. The active site 
loops are excluded from 
the surface presentation 
and are displayed by col-
ored tubes. Loops 1 and 
5, pink; loops 2 and 6, 
blue; loops 3 and 7, cyan; 
and loops 4 and 8, green. 
Structural invariant resi-
due positions in these 
loops [see panel (B)] are B 
in red. The side chains of 
the invariant aspartate HisA-N 1 1  m 57 
and valine residues in HisF-N PA 54 
loops 1 and 5 and the HisA-C 118 11 E= 171 
two phosphate ions HISF-C 124 iJ 
bound to  the active site Consensus 

of HisF are shown as -
well. (B) Structure-based 
sequence alignment (28) H~SA-N 59 SGE.. .a 
of the NH,- and COOH- H~sF-N 59 RKT.. .1 
terminal halves of HisA Hi&-C 173  Q E H ~  
and HisF. The positions HisF-C 180 SG 
of the secondary struc- consensus 
ture elements are color 
coded as in (A). Residues 
that are conserved amongsequences of one enzyme (75) are shown in bold. 
Residues that are similar in the structurealignmentare boxed. Invariant and 
similar residues in the consensus are in capital and lowercase characters, 

+ 
R . . . . .  

*-
I-. ..D 
-Ew. 

E G 
~ R E I D G R E  

respectively. The locations of the secondary structural elements are colored 
as in (A). The approximate consensus locations of the secondary structure 
elements and loops are also indicated above the alignment. 
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the two HisF mutants in which one of the two 
invariant aspartates has been replaced by an 
asparagine (Dl IN, D130N). Conversely, HisA 
does not show any detectable HisF activity 
under identical conditions, which is not surpris- 
ing in light of the higher complexity of the HisF 
synthase reaction compared to the HisA 
isomerization reaction (19). Our data led to a 
model of the evolution of the HisA and HisF 
plci barrels by two successive gene duplications 
pig. 3). In this model, the first gene duplication 
from an ancestral half-barrel sequence is fol- 
lowed by gene fusion and mutational adaptation 
of the initially identical half-barrel sequences 
into a complete Plci barrel with postulated 
broad functionality. The extant enzymes HisA 
and HisF result from a second gene duplication 
leading to recruitment and diversification of the 
present catalytic functions. 

The similarity of HisA and HisF is rerninis- 
cent of a previously identified pair of related P / a  
barrel enzymes, TrpC and TrpF, which catalyze 
two successive reactions in tryptophan biosyn- 
thesis (1 7). The HisA and HisF, and TrpC and 
TrpF enzyme pairs support the Horowitz hy- 
pothesis of metabolic pathway evolution by sub- 
sequent gene duplication and diversification 
while retaining the binding mode for a common 
ligand (20). To detect more distant relationships 
of p/ci barrels from different pathways, we 
searched the Protein Data Bank (1987 protein 
chains, currently) for structures similar to HisA 
and HisF (21). The three top-scoring entries, 
showing the highest similarity to HisA, are the 
three plci barrel enzymes of the tryptophan bio- 
synthesis pathway (TrpC, rank 1; TrpF, rank 2; 

Half fl/a barrel 

Gene duplication 
and fusion 

Struotural and 
functional adaplation - 

Ancestral 

I 
B/a barrel 

HisA HisF 

Fig. 3. Model for the evolution of the P/ci barrel 
scaffold by twofold gene duplication. The first 
gene duplication generates two initially identi- 
cal half-barrels that are then fused and adapted 
into an ancestral P/ci barrel. A second gene 
duplication step leads to the diversification of 
the ancestral P/ci barrel into two enzymes with 
distinct. catalytic activities. 

and TrpA, rank 3). These three enzymes are also 
among the top 10 if HisF is used as structural 
template (ranks 4,2, and 7, respectively), dem- 
onstrating distant but significant structural rela- 
tions of P/ci barrels between these two metabol- 
ic pathways. When the reaction mechanisms of 
these enzymes are compared, there is a strong 
interpathway similarity between TrpF and His& 
which both catalyze isomerization reactions by 
an Amadori rearrangement mechanism (1, 16). 
The TrpF and HisA pair fits well into another 
attractive hypothesis that considers binding to 
the transition state of chemically related reac- 
tions to direct evolution of enzymes (22, 23). 
The detection of these relations has opened op- 
portunities to engineer enzymatic activities by in 
vitro evolution techniques using the P/ci barrel 
scaffold. This potential has been recently dem- 
onstiated by the conversions of TrpC and H i A  
into TrpF (9, 24). 

The currently available genomes provide a 
growing database of multidomain proteins that 
have evolved from gene fusion, either following 
duplication of initially identical genes or from 
genes with different function. The comparative 
analysis of their single-gene building blocks by 
computational methods allows the identification 
of a large number of functional relations in 
biological processes (25). HisA and HisF are the 
first p/ci barrel enzymes with a detectable two- 
fold repeat structure and can be regarded as 
prototype gene fusions leading to compact sin- 
gle-domain proteins, unlike many established 
examples of multidomain proteins (26, 27). 
Each half-barrel of these two enzymes contains 
a phosphate-binding motif that is imposed by 
the nature of their biphosphate substrates, Pro- 
FAR and PRFAR. The same motif is found in 
the COOH-terminal halves of a number of other 
P / a  barrel enzymes, including those of the tryp- 
tophan biosynthesis (1 7), but not in their m- 
terminal halves. This could indicate a half-barrel 
precursor for a large number of Plci barrels 
where, however, detectable relations might have 
been lost during the evolutionary diversification 
process. Therefore, the insights into the evolu- 
tion of the histidine biosynthesis Plci barrel en- 
zymes could allow reinvestigation of the evolu- 
tionary, structural, and functional relations of 
the PIa barrel family, which is likely the most 
widely used scaffold in soluble proteins. We 
anticipate that our approach to deconvolute ex- 
tant proteins with a compact domain into small 
ancestral precursor domains is generally appli- 
cable to the genomic analysis of other protein 
fold families by computational and experimen- 
tal methods. 
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Activation of the transcription factor nuclear factor (NF)-KB by proinflamma- 
tory stimuli leads t o  increased expression of genes involved in inflammation. 
Activation of NF-KB requires the activity of an inhibitor of K B  (IKB)-kinase (IKK) 
complex containing two kinases (IKKa and IKKP) and the regulatory protein 
NEMO (NF-KB essential modifier). An amino-terminal a-helical region of NEMO 
associated with a carboxyl-terminal segment of I K K a  and IKKP that  we term 
the NEMO-binding domain (NBD). A cell-permeable NBD peptide blocked as- 
sociation of NEMO with the IKK complex and inhibited cytokine-induced NF-KB 
activation and NF-KB-dependent gene expression. The peptide also amelio- 
rated inflammatory responses in two experimental mouse models of acute 
inflammation. The NBD provides a target for the development of drugs that 
would block proinflammatory activation of the  IKK complex without inhibiting 
basal NF-KB activity. 

The regulatory protein NEMO (also named 
1KK-y) is required for proinflammatory ac- 
tivation of the IKB-kinase (IKK) complex 
(1-5). We surmised that prevention of the 
NEMO-IKK interaction would inhibit sig- 
nal-induced NF-KB activation and, there- 
fore, attempted to identify the mechanism 
of interaction between NEMO and IKKP. 
We analyzed the interaction of NEMO 
fused at its NH,-terminus to glutathione 
S-transferase (GST-NEMO, see Fig. 1A) 
with IKKP mutants lacking the catalytic, 
leucine zipper, and helix-loop-helix (HLH) 
domains [Fig. 1A and (6)]. None of the 
mutants interacted with GST, whereas all 
three COOH-terminal fragments (307-756, 
458-756, and 486-756) interacted with 
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GST-NEMO [Fig. 1A and (7)]. None of the 
NH,-terminal fragments (1-458, 1- 605, or 
1-644) precipitated with GST-NEMO, 
demonstrating that NEMO interacts with 
the COOH-terminus of IKKP distal to the 
HLH. An IKKP mutant consisting of only 
residues 644 to 756 associated with GST- 
NEMO, confirming that this region medi- 
ates interaction between the molecules 
(Fig. 1B). Furthermore, IKKP(644-756) 
dose-dependently inhibited cytokine-in-
duced NF-KB activation in transfected 
HeLa cells [Fig. 1C and (6, 8 ) ] .The most 
likely explanation for this result is that 
overexpressed IKKP(644-756) associates 
with endogenous NEMO and prevents re- 
cruitment of regulatory proteins to the 
IKK-complex. 

To identify the domain of NEMO (1-3, 9) 
required for association with IKKP, we ana- 
lyzed the interaction of GST-IKKP(644-
756) with truncation mutants of NEMO 
(Fig. ID). IKKP(644-756) associated with 
NEMO fragments 1-196, 1-302, and 44- 
419 but not 197-419 or 86-419, indicating 
that the interaction domain lies between 
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residues 44 and 86. A deletion mutant lack- 
ing this a-helical region (residues 50-93, 
del.aH) did not interact with IKKP(644- 
756) (Fig. 1E) and inhibited tumor necrosis 
factor-a (TNF-a)-induced NF-KB activity 
(Fig. IF), confirming the dominant-nega- 
tive effects of the NEMO COOH-terminus 
(2 , 3). These findings suggest that the NH,- 
terminus of NEMO anchors it to the IKK- 
complex, leaving the remainder of the mol- 
ecule accessible for interacting with regu- 
latory proteins. 

The IKKP COOH-terminus contains a 
region with identity to IKKa (denoted a , ) ,  
a serine-rich domain (1 0), and a serine-free 
region (Fig. 2A). Analysis of IKKP mu-
tants omitting each of these segments indi- 
cated that NEMO associates with the 
COOH-terminus after residue 734 (Fig. 
2A). The region of IKKP from F734 to 
T744 [a, in Fig. 2B ( l l ) ]  contains a seg- 
ment that is identical to the equivalent 
sequence in IKKa. The IKKP sequence 
then extends for 12 residues forming a 
glutamate-rich region (Fig. 2B) that we 
speculated would be the NEMO interaction 
domain. However, a truncation mutant 
omitting this region (1-744) associated 
with GST-NEMO (Fig. 2C). Thus, the 
NEMO-interaction domain of IKKP ap-
pears to be within the a,-region of the 
COOH-terminus. 

We next used the IKKP(1-744) and (1- 
733) mutants to determine the effects of 
NEMO association on IKKP activity and 
found that IKKP(1-733) induced NF-KB ac- 
tivation that was approximately 1.5 to 2 times 
that induced by wild-type IKKP (Fig. 2D). 
Furthermore, NF-KB activity induced by 
IKKP(1-744) was identical to that induced 
by wild-type IKKP. Thus, NEMO may main- 
tain basal IKKP activity as well as regulate 
its signal-induced activation. 

Because the a,-region of IKKP resem- 
bles the COOH-terminus of IKKa (Fig. 
2B), we tested the ability of IKKa to inter- 
act with NEMO (7). IKKa and IKKP ex- 
pressed in wheat germ extract both associ- 
ated with GST-NEMO demonstrating that 
the individual interactions are direct (Fig. 
3A). Further analysis revealed that IKKa 
interacts with NEMO through the COOH- 
terminal region containing the six amino 
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