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Modulation of Human Visual 
Cortex by Crossmodal Spatial 

Attention 
Emiliano ~acaluso,' .~* Chris D. Frith: Jon   river' 

A sudden touch on one hand can improve vision near that hand, revealing 
crossrnodal links in spatial attention. It is often assumed that such links involve 
only rnultimodal neural structures, but unimodal brain areas may also be 
affected. We tested the effect of simultaneous visuo-tactile stimulation on the 
activity of the human visual cortex. Tactile stimulation enhanced activity in the 
visual cortex, but only when it was on the same side as a visual target. Analysis 
of effective connectivity between brain areas suggests that touch influences 
unirnodal visual cortex via back-projections from multimodal parietal areas. 
This provides a neural explanation for crossrnodal links in spatial attention. 

Spatial attention picks out particular locations 
for further sensory processing. Most studies 
of spatial attention have considered only a 
single sensory modality at a time (1, 2), but 
crossmodal links have now been demonstrat- 
ed psychophysically. For instance, a tactile 
cue at one location can improve discrimina- 
tion for visual stimuli at that location relative 
to others (3, 4). This crossmodal effect arises 
even if the tactile cues are task-irrelevant and 
do not predict the location of the visual tar- 
gets, suggesting an exogenous (stimulus- 
driven) attentional mechanism. The neural 
basis of these crossmodal effects in humans 
remains unknown. It has generally been as- 
sumed that they affect only multimodal neu- 
ral structures (5-7), but recent accounts sug- 
gest that back-projections from multimodal 
areas to unimodal areas may play a role 
(8-1 0). 

ganized in a 2 by 2 factorial design. One 
factor was the side of visual stimulation (right 
or left). The second factor was the occurrence 
of right tactile stimulation (present or ab- 
sent). Our analysis first established the effect 
of lateralized visual stimulation on contralat- 
era1 occipital areas. We then tested whether 
responses within these areas were modulated 
by the presence of tactile stimulation (14). 

Figure 1 shows activations due to the side 
of the peripheral visual stimulation. As ex- 
pected, activations were found in contralater- 
a1 occipital areas. The main effect of left 
hemifield visual stimulation was a cluster of 
activation in the posterior part of the right 
lingual gyrus, contralateral to the visual tar- 
gets. The maximum activation was at x, y, 
z = 30, -84, -14 (2 score = 4.8; P-correct- 
ed = 0.005). The reverse comparison showed 
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that stimulation in the right hemifield also 
activated the posterior part of the lingual 
gyrus, now in the left hemisphere (x, y, z = 
-24, -74, -10; Z score = 5.1; P-correct- 
ed <0.001) (IS). 

These symmetrical activations in the lin- 
gual gyri define a brain response that is sen- 
sitive to the side of our visual stimulation. We 
then examined the effect of concurrent right 
tactile stimulation on these contralateral re- 
sponses by testing for the interaction between 
the side of the visual stimulation and the 
presence of touch. The analysis revealed am- 
plification of visual response to lights on the 
right side by touch on the same side. The left 
lingual gyrus showed a significant interac- 
tion, with the maximum at x, y, z = -18, -82, 
-6 (Z score = 3.2, P-corrected = 0.044) 
(Fig. 2). Thus, the left lingual gyrus not only 
responded to right visual stimulation, but did 
so more strongly with concurrent tactile stim- 
ulat'ion on the right (compare red curve with 
blue curve in left graph of Fig. 2C). Such 
modulation was not simply due to this brain 
area responding directly to touch. The cross- 
modal amplification was spatially specific 
because bimodal stimulation that was spatial- 
ly incongruent (i.e., adding right tactile to left 
visual stimulation) did not cause any signal 
increase in the same area (see magenta curve 
in right graph of Fig. 2C). 

By contrast, in the right lingual gyrus, 
responses to left visual stimuli tended to 
show a reverse pattern of suppression by right 
touch, though this was not significant. In a 
follow-up study, tactile stimulation was de- 
livered to the left hand instead. This produced 
mirror-image results with significant cross- 

W; used event-related functional magnet- 
ic resonance imaging (f MRI) (11) to test Fig. 1. Effect of side of the visual A 

stimulation. The effect of periph- whether tactile stimuli can spatially influence eral visual was pro- 
unimodal visual areas via back projections. jected on a rendered view of the 
On each trial, the participants (12) received canonical MNI brain template. 

, 

visual targets in either the left or right hemi- The cerebellum was removed 
field in a manner that was unpredictable. On and the brain was tilted to allow i 
a randomly chosen half of the trials, this a direct view the ventral 

face of the occipital lobes (A) visual stimulus was coupled with concurrent Main effect of left versus ;ight 
tactile stimulation to the right hand (i.e., at visual ~~~~~~i~~~ 

Right lingual gyrus the same external location as any right visual of [eft versus right events (with 
stimulation) (13). Four event types were or- and without tactile stimulation) < O.Ool 

LLeft lingual gyrus 

I P < 0.001 
. . . - 

revealed activation of 'the right 
lingual gyrus, contralateral to the visually stimulated side. The right middle and superior occipital 
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modal attentional effects now in the right 
lingual gyms, which showed maximal re- 
sponse for left visual stimulation combined 
with left touch (16). 

The lingual gyrus has long been consid- 
ered a unimodal visual area, with no tactile 
afferent inputs. This agrees with the lack of 
any main effect from tactile stimulation in 
this region (Fig. 2C). A main effect of adding 
right touch (i.e. regardless of side of visual 
stimulation) was found only in the left supe- 
rior postcentral gyrus and postcentral sulcus 
(x, y, z = -44, -40, 56; Z score = 4.8; 
P-corrected <0.001) and in the parietal oper- 
culum (x, y, z = -64, -22, 16; Z score = 5.6; 
P-corrected C0.001). All these tactile activa- 
tions occur in somatosensory areas (1 7) con- 
tralateral to the stimulated hand; no such 
overall increase with touch was found any- 
where in the occipital lobe. 

What is the source for the crossmodal 
spatial effect in the lingual gyrus? We hy- 
pothesized that tactile information reaches 
the occipital lobe via back-projections from 
higher multimodal areas. We performed a 
second analysis, testing for condition-depen- 
dent changes in "effective connectivity" (18). 
This analysis highlights changes in the cou- 
pling between brain areas (i.e., the contribu- 
tion of one area to the f MRI signal measured 
in a different area), which depend on the 
experimental condition. We anticipated that 
areas mediating the observed crossmodal in- 
fluence should increase their effective con- 
nectivity with the left lingual gyrus only dur- 
ing the spatially congruent bimodal stimula- 
tion, for which the amplification in the'left 
lingual gyrus had been observed. 

We tested for any such increase of effec- 
tive connectivity with the left lingual gyrus 
specific to the spatially congruent bimodal 
stimulation across the whole brain. Only a 
few circumscribed areas showed the ~redict- 
ed increase in effective connectivity, indicat- 
ing a highly specific network. The most ro- 
bust effect was in the right inferior parietal 
lobe (x, y, z = 52, -22,34; Z score = 4.0), in 
the anterior part of the suprarnarginal gyrus 
(Fig. 3A). This area has been suggested to be 
the homolog of area 7b in monkeys (19), 
where single-unit electrophysiology has dem- 
onstrated the presence of visuo-tactile neu- 
rons with spatially corresponding bimodal 
receptive fields (20). The right-hemisphere 
lateralization of this activation agrees with 
previous proposals that, in the human parietal 
lobe, the right-hemisphere plays a dominant 
role in spatial representation and attention 
(21), consistent with studies of deficits in 
neurological patients (22). 

The left postcentral gyrus (x, y, z = -30, 
-34,56; Z score = 3.3), which is the somato- 
sensory cortex contralateral to the stimulated 
right hand, also showed condition-specific 
increases in coupling with the visual area in 

the lingual gyrus (Fig. 3B) during spatially 
congruent bimodal stimulation. The only ad- 
ditional areas to show increased coupling 
were the right posterior parietal lobule (x, y, 
z = 16, -68, 52; Z score = 3.5) and left 
lateral occipital gyrus (x, y, z = -34, -82, 16; 
Z score = 3.7). Reciprocal connections be- 
tween occipital cortex, posterior parietal cor- 
tex, and multimodal areas in the inferior pa- 
rietal lobe might provide the anatomical sub- 
strate for the crossmodal interaction observed 
in the lingual gyrus. Although there are no 
known direct connections from the supramar- 
ginal gyrus (or area 7b in monkeys) to pos- 
terior ventral occipital areas, pathways may 

Fig. 2. Crossmodal effects in the A 
left lingual gyms. An interaction 
between side of the visual stim- 
ulation and the presence of right 
somatosensory input was de- 
tected in the left lingual gyrus. 
We found signal amplification 
when the right visual stimulus 
was coupled with the right tac- 
tile stimulation. (A) Group re- 

exist via posterior parietal areas (23, 24). 
Tactile information from the postcentral gy- 
ms (i.e., contralateral somatosensory cortex) 
might thus be transferred to occipital areas 
(contralateral visual cortex) via back-projec- 
tions from parietal areas. This process de- 
pends on whether the visual and tactile stim- 
uli are on the same side. 

Our findings allow several conclusions. 
First, they demonstrate that spatial cueing 
in one modality can affect activity in stmc- 
tures that only receive afferent input from a 
different modality. Second, such cross- 
modal influences of touch on the visual 
cortex depend on the spatial relation be- 

Subject 
sults of activation rendered on 
the brain surface. (B) Size of the C 
interaction effect for each sub- 6 Right visual stimulation Left visual stimulation 
ject (with SE). The search volume uight touch 
for each subject-specific maxi- 4  

region as for the group effect s 
-p: 1 .NO~OUC~ 1 mum was restricted to the same 

8 2 , 

(i.e., areas showing a main effect 1 0 
of side of the visual stimulation). % -2 
The plotted effect is the weight- 

I -2 

ed sum of parameter estimates -40 from the multiple regression. For 20 40 0 20 40 

the interaction shown, this Time after stimulus onset (sec) Time after stlmulus onset (sec) 
weighting corresponds to partic- 
ipants receiving right visual stimuli with right tactile stimuli versus those without right touch, 
minus participants receiving left visual stimuli with right tactile stimuli versus those without. All 
effects are scaled to SE units. (C) Estimated signal in the cluster showing significant amplification 
of response to right visual stimuli by right touch. The shape of the curves reflects the function used 
to fit the data. The effect size (scaled to SE units) is the sum of the parameter estimates for the 
six participants for each of the four events. For each event type, the parameters were estimated by 
fitting the mean signal across the activated voxels. 

Fig. 3. Changes in effective con- 
nectivity with the left lingual gy- 
rus. Such changes were revealed 
by testing for condition-specific 
changes in the contribution of 
any other brain areas to the fMRl 
signal in the left lingual gyrus 
(78). The right supramarginal gy- 
rus in the inferior parietal lobe 
(A) demonstrated the most sig- 
nificant change in effective con- 
nectivity with the left lingual gy- 
rus. This inferior parietal region 
showed higher coupling during 
bimodal, spatially congruent tri- 
als than during bimodal, spatially 
incongruent trials. A similar pat- 
tern was found in the left post- 
central gyrus (B), which is .the 
somatosensory area contralater- 
a1 to the stimulated hand. For 
both brain areas, effects for individual participants are plotted on 
to SE units). 
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tween visual and tactile sensory input. Fi-
nally, the analysis of effective connectivity 
suggests that tactile input to the somatosen- 
sory cortex may influence the visual cortex 
via back-projections through association 
areas in the parietal lobe. This accords with 
recent theoretical proposals ( 8 )  that such 
back-projections may play a crucial role in 
crossmodal links in spatial attention. 
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