
vices; to fabricate 3D comvutationa~ devices. 
we must incorporate elements of digital logic 
[e.g., five-pin, single-logic gates (19)l. Self- 
assembly facilitates the formation of highly 
interconnected elements in both deterministic 
and probabilistic networks; it may be possible 
to use this kind of self-assembly to generate 
other logical structures (e.g., artificial neural 
networks) (20). 

We have canied out all experiments using 
only a limited number of polyhedra: to extend 
this approach to a larger number of elements, 
and to smaller elements, it will be necessary to 
develop practical methods for fabricating these 
elements; the need for 3D microfabrication per- 
meates 3D self-assembly, but new methods are 
beginning to emerge (21-24). Although large 
arrays may have defects, it may be possible to 
develop computational algorithms even in de- 
fective networks (25-28). 
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A solid state, electronically addressable, bistable [2]catenane-based molecular 
switching device was fabricated from a single monolayer of the [2]catenane, 
anchored with phospholipid counterions, and sandwiched between an n-type 
polycrystalline silicon bottom electrode and a metallic top electrode. The device 
exhibits hysteretic (bistable) currentlvoltage characteristics. The switch i s  
opened at  +2 volts, closed at  -2 volts, and read at  -0.1 volt and may be 
recycled many times under ambient conditions. A mechanochemical mecha- 
nism for the action of the switch is presented and shown t o  be consistent with 
temperature-dependent measurements of the device operation. 

Modem molecular electronics began in 1974 
when Aviram and Ratner (1 )proposed a mo- 
lecular rectifier based on an asymmetric mo- 
lecular tunneling junction. As various syn- 
thetic and analytical tools have been devel- 
oped, it has become possible to contemplate a 
real technology based on molecular electron- 
ic devices. Several hndamental devices us- 

ing molecules have recently been demonstrat- 
ed, including rectifiers (2), resonant tunnel 
junctions (3) ,  and singly settable molecular 
switches that can be electronically configured 
for wired-logic gates (4, 5). In this report, we 
describe a reconfigurable molecular-based 
solid state switch capable of ambient opera- 
tion. The device was fabricated from a single 
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monolayer of a bistable [2]catenane (6-8) 
that was anchored with amphiphilic phospho- 
lipid counterions and sandwiched between an 
n-type polycrystalline Si (poly-Si) electrode 
and a TiIA1 top electrode. The device exhibits 
hysteretic (bistable) currentlvoltage charac- 
teristics. The switch can be opened at +2 V, 
closed at -2 V, and read between 0.1 and 0.3 

salts of the tetracationic cyclophane and the 
two [2]catenanes incorporating it were dis- 
solved in MeCN. Immediately before spread- 
ing, the DMPA and cyclophanelcatenane so- 
lutions were mixed to yield a molar ratio of 
6 : 1. For all Langmuir films, excepting the 
eicosanoic acid control (12), the compounds 
were deposited onto the aqueous subphase at 
20°C and allowed to equilibrate for 30 min 
before transfer to the patterned substrates 
(13). The fabrication of molecular sandwich 
tunneling junctions from LB monolayers has 

mask. The dimensions of the bottom and top 
electrodes were 7 and 10 p.m, respectively. 
Except where noted, we measured devices in 
air at room temperature, using a shielded 
probe station with coaxial probes. Bias volt- 
ages were applied to the poly-Si electrode, 
and the top electrode was connected to 
ground through a current preamplifier (model 
121 1, DL Instruments, Ithaca, New York). 

With a few exceptions, the operational 
characteristics of our solid state devices were 
consistent with the known (7) solution-phase 
mechanism of the [alcatenane (Fig. 1A). This 
compound, whose template-directed synthe- 

V and may be recycled many times. 
The standard switch of integrated circuit 

technology is the three-terminal Si-based tran- 
sistor. Such devices are not just switches--they 
can also exhibit gain. Our long-term goal is to 
construct prototype electronics circuits by using 

been described previously (4). In the present 
work, the bottom electrodes were 7-p.m-wide 

bottom-up (chemical assembly) manufacturing 
(9). Because chemical assembly results in peri- 
odic structures, it is difficult to imagine how 
three-terminal devices can be made to tile a 
two-dimensional surface. Thus, our approach is 
to separate the function of gain from that of 
switching and thereby open up the possibility of 
two-terminal switching devices, which are ame- 
nable to chemical assembly. For a two-terminal 
switch, the various tasks of opening, closing, 
and interrogating the switch may be accom- 
plished by using different voltages. An analogy 
is a magnetic bit that is characterized by a 

n-type poly-Si (resistivity of 0.02 ohm-cm). 
Typically, poly-Si films formed by direct 
chemical vapor deposition (CVD) growth 
onto SiO, are neither smooth nor defect-free. 
However, amorphous Si films can be very 
smooth (14), and so, amorphous Si was used 
as a starting point for the fabrication of 
smooth poly-Si electrodes. This many step 
process was critical for achieving a high (ef- 
fectively 100%) device yield (15). After LB- 
monolayer deposition (16), 10-p.m-wide top 
electrodes (50 A Ti followed by 1000 A Al) 
were deposited onto the LB film using elec- 
tron-beam evaporation through a shadow 

sis has been described previously (7), con- 
sists of a tetracationic cyclophane that incor- 
porates two bipyridinium units, interlocked 
with a crown ether containing a tetrathiaful- 
valene (TTF) unit and a 1,5-dioxynaphtha- 
lene ring system (NP) located on opposite 
sides of the crown ether. The switching 
mechanism is illustrated in Fig. 1B. The 
ground state "co-conformer" (1 7, 18) [A0] of 
this [alcatenane has the TTF unit located 
inside the cyclophane. Upon oxidation, the 
TTF unit becomes positively charged, and 
the Coulombic repulsion between TTF+ and 
the tetracationic cyclophane causes the crown hysteretic magnetization versus magnetic field 

curve. The negative field sets the bit to spin- 
down, the positive field sets the bit to spin-up, 
and the bit is interrogated at the zero-field. For Fig. 1. (A) Molecular 

drawing of the bistable 
[2]catenane used in this 
work. The voltage-driv- 
en circumrotation of 
co-conformer y ]  to 
co-conformer B'] is 
the basis of the device. 
(B) Proposed mechano- 
chemical mechanism 

a two-terminal molecular electronic switch, the 
variables "field" and "magnetization" should be 
replaced by "voltage" (V) and "current" (I). 
Most molecular junctions will not exhibit a 
hysteretic I-V response, and designing such a 
response into the molecule is a synthetic chal- 
lenge. Our approach is to use mechanically 
interlocked molecules in the form of [2]cat- 
enanes (10) that undergo a reversible circum- 
rotational motion of one of the rings through the 
cavity of the other ring upon oxidation and 
subsequent reduction. In this case, the voltage 
required to mechanically switch the molecule is 

for the operation of the 
device. Co-conformer 
[A0] represents both 
the ground-state struc- 
ture of the [2]catenane 
and the "switch open" 
state of the device. 
When the [2]catenane 
is oxidized (by applying 
a bias of -2 V), the TTF 
groups (green) are ion- 
ized and experience a 
Coulomb repulsion 
with the tetracationic 
cyclophane (blue), re- 
sulting in the circum- 
rotation of the ring and 

the ionization energy of the molecule plus an 
activation barrier to ionization. 

The preparation of monolayers, composed 
of a mixture of cyclobis(paraquat-p-phe- 
nylene) tetrakis(hexafluorophosphate) on its 
own (or as one of the components of the 
[2]catenanes) and the' anchor phospholipid 
dimyristoylphosphatidic acid (DMPA) as its 
monosodium salt dissolved in CHC1,IMeOH 
(3/1), has been described previously (11). the formation or  co- 

conformer [B+]. When 
the voltage is reduced 
to a near-zero bias, the 
co-conformer [BO] is 
formed, and this repre- 
sents the "switch 
closed" state of the de- 
vice. Partial reduction 
of the cyclophane (at 

Langmuir monolayers were prepared on an 
aqueous (18.2-megohm H,O) subphase of a 
Langmuir-Blodgett (LB) trough (type 61 ID, 
Nima Technology, Coventry, UK). The PF; 

Department of Chemistry and Biochemistry, Univer- 
sity of California at Los Angeles, 405 Hilgard Avenue, 
Los Angeles, CA 90095-1 569, USA. an applied bias of +2 

V) is necessary to regenerate the [A0] co-conformer. For simplicity of presentation, a 2e- reduction ste P is shown, but the actual number of electrons was not measured, and so, the reduced co-conformer [AB ] 
is indicated with an unknown oxidation state. 

*To. whom correspondence should be addressed. 
E-mail: stoddart@chem.ucla.edu (J.F.S.) and heath@ 
chem.ucla.edu (J.R.H.) 
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ether to circumrotate to give co-conformer 
[B+], wliich will reduce back to [BO] when 
the bias iq returned to 0 V. This bistability is 
the basis of this device. The energy gap be- 
tween thc highest occupied and lowest unoc- 
cupied nioiecular orbitals for co-conformer 
[BU] must be narrower in energy than the 
correspocding gap in co-conformer [A"], im- 
plying that, in a solid state device. tunneling 
current through the junction containing [BO] 
will be grzater. Thus, this co-conformer rep- 
resents t:lc "switch closed" state, and the 
ground sate  co-conformer [Ao] represents 
the "switl-h open" state. 

Various measurements of the I-V hysteresis 
of the dei.ice are shown in Fig. 2. A to C, and 
Fig. 2D iilustrates cycling of the device. Both 
the forward and reverse bias traces (Fig. 2A) 
cross zero current at zero voltage, indicating 
that the sn-itching of the device is not related to 
a charge c1orage (capacitive) effect. Perhaps the 
"cleanest" experiment for probing the hystere- 
sis of the device is to send a series of "write" 
voltage p~ l ses  to the device, such as -2.0. -1.9. 
-1.8 V. . . . 1.9, 2.0. 1.9. 1.8 V. . . .. -2.0 V. 
After each .Ante pulse, the device is read at a 
constant small (nonperturbing) voltage. In such 
an experiinznt. the hysteresis is recorded at a 
single voltage. and effects such as device ca- 
pacitance 7r.c canceled out. For ferroelectric 
sandwich .je\ ices, this measurement is akin to 
generating u "remnant polarization" curve (19). 
For the present devices. we refer to this exper- 

iment as a remnant molecular signature, and we 
show such a measurement in Fig. 2C. This 
remnant molecular signature does bear similar- 
ities to the hysteresis loop of a ferromagnet. 

In the solution phase, the [2]catenane ex- 
hibits only a slight hysteresis, especially 
when compared to the solid state device. To 
understand the differences between the solu- 
tion-phase and solid state cycling of this mol- 
ecule. it is important to consider the nature of 
the solid state electrochemical junction. 

The device consists of the [2]catenane 
monolayer (11) isolated from both electrodes 
by tunneling barriers. This geometry has two 
implications for the operation of the device. 
The first implication relates to the nature of 
the redox chemistry that can occur within the 
junction. A 1- to 1.5-nm-thick SiO, layer 
exists between the [2]catenane and the poly- 
Si electrode, and the long alkyl chain phos- 
pholipid counterions separate the [2]catenane 
from the top Ti:Al electrode. In such an 
asymmetric device, one of the tunnel barriers 
will be the limiting barrier for current flow. 
At either positive or negative bias, it is pos- 
sible to tunnel through both filled and empty 
molecular states, and so. one must look to the 
symmetry of the device to understand the 
redox chemistry of the junction. Consider 
current flowing from an electrode through a 
thick tunnel barrier onto a molecule and then 
being drained away through a thin banier to 
the second electrode. For the case of the filled 

-2.0 0 2.0 -2.0 0 2.0 
Voltage (V) Voltage (V) 

Write Voltage (V) ReadrWrite Cycles 

Fig. 2. (A) I-V hysteresis loop o f  one o f  the devices, as measured at 291 K. The current varied by 
about four decades (from tenths o f  m A  t o  hundreds o f  PA) over the  range o f  the voltage scan. The 
diode effect originates largely f rom the  t w o  different electrode materials. In (B), the structure o f  
this hysteresis is highlighted by p lot t ing the current rat io o f  the forward divided by the reverse bias 
scans. (C) The remnant molecular signature o f  the device, measured by varying the write voltage 
in  40-mV steps and by reading the device a t  -0.2 V. (D) The switching operation o f  this device, as 
measured at 291 K. The junction resistance was read a t  a bias o f  +0.1 V as the device was 
alternately opened a t  + 2  V and closed at -2 V. The devices did not  appear t o  age as a consequence 
o f  repeated cycling. However, our (unpackaged) devices ceased t o  operate after a period o f  2 t o  3 
months. 

states, the molecule must be oxidized before 
current can flow through the thick barrier. 
Thus, oxidation of the molecule is fast (cur- 
rent flow through the thin barrier), but charge 
neutralization of the oxidized molecule (cur- 
rent flow through the thick barrier) is slow. 
and the molecule spends a relatively large 
amount of time in its oxidized form. Similar- 
ly, that same molecule would spend substan- 
tially less time in its reduced form. Thus. 
current flow in this electronic configuration is 
"net oxidizing," whereas the opposite bias is 
"net reducing." In our devices, the Si02 bar- 
rier is current limiting, implying that negative 
bias is net oxidizing and positive bias is net 
reducing. 

The devices cycled reproducibly only if 
they were opened at voltages greater than 
+ 2  V and closed at voltages less than 1 . 5  
V, implying that both oxidation and reduc- 
tion are critical for device switching. Start- 
ing with co-conformer [A"] in Fig. IB, the 
state of the switch was read by measuring 
the junction resistance Ro at +O. 1 V. Ap-
plication of a bias of -2 V to the junction 
creates [Af] ,  which undergoes circumrota- 
tion to give [Bf ] .  Subsequent reduction of 
the bias generates [B"], and the device state 
again can be read by measuring the junction 
resistance R, at t O . 1  V. A bias of + 2  V is 
then applied to the device. We postulate 
that at least a partial reduction of the tetra- 
cationic cyclophane enables the transfor- 
mation of [BO] back to [AU]. When the 
junction resistance is read again at +O. I V. 
we find the original value (to t10%) of RL. 
which corresponds to a junction containing 
[A0] co-conformers. This sequence of 
events constitutes one period of the com-
plete cycle (Fig. 2B). The last step, which 
leads to the regeneration of [.A0]. involves 
circumrotation of the interlocked rings with 

210 280 
Temperature ( K )  

Fig. 3. Plotting the negative bias peak in  the 
hysteresis ratio versus temperature represents 
the temperature dependence o f  the molecular 
switch. Near 220 K, the switching o f  the device 
is quenched, indicating that  the mechanism o f  
the device operation has at least one thermally 
activated step. Error bars represent the noise in  
the I - V  measurements. 
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respect to one another within the [2]cat- 
enane. We hypothesize that the energy bar- 
rier to this relative motion is lowered by 
decreasing the Coulombic interactions be- 
tween the positively charged [2]catenane 
and the phospholipid counterions. Never- 
theless, this step should still be an activated 
process. Thus, whereas the [A+] to [B+] 
circumrotational process is voltage activat- 
ed, the regeneration of [A0] is thermally 
and voltage activated. This mechanism is 
consistent with temperature-dependent 
measurements (Fig. 3), which indicate that 
the overall cycling of the switches has at 
least one thermally activated component 
and is quenched near 200 K. 

The second implication of our double 
tunnel barrier device geometry relates to 
the voltage-dependent electronic signatures 
of the [2]catenane. When a charged mole- 
cule is placed at some distance r from a 
conducting surface, the conducting surface 
exhibits a polarization response to the 
charged molecule, which leads to an image 
charge of opposite sign at a distance of -r 
within the electrode (20). This response 
results in a Coulomb stabilization of the 
charged molecule that scales as e2I&r, 

where e is the fundamental unit of charge 
and E is the dielectric constant of the tunnel 
barrier separating the charged molecule and 
the electrode. The net effect is that the 
energy levels of the molecule are pulled 
toward the Fermi levels of the electrodes, 

i 
Polarizability of 
~olvSielectrode increases , 

I 
240 280 320 

Temperature (K) 

Fig. 4. The voltage position of the negative bias 
peak in the I-V hysteresis ratio is plotted as a 
function of temperature. As temperature in-
creases, the hysteresis features shift toward the 
Fermi levels of the electrodes (zero bias), indi- 
cating the presence of image charges in the 
electrodes that tend t o  mask the rnolecular 
electronic energy levels. At low temperature, 
the polarizability of the poly-Si decreases, and 
the electronic states of the molecule wil l  de- 
couple from that electrode (and shift away 
from zero bias). Minimizing the coupling be- 
tween the molecules and the electrodes while 
maximizing the current flow through the device 
is a key aspect in the design of a solid state 
molecular electronic switch. Error bars repre- 
sent the uncertainties in determining the peak 
positions. 

and the electronic signatures of the mole- 
cule can therefore be masked. The purpose 
of our tunnel barriers is to minimize this 
effect by removing the molecules from the 
surface of the electrodes. At the same time, 
however, the tunnel barriers must still be 
relatively thin or current will not flow 
through the device. Thus, we expect that 
the molecules will still be somewhat cou- 
pled to the electrodes through image charg- 
es. In our device, one of the electrodes is 
n-doped poly-Si. As temperature is re-
duced, the charge carriers in the electrode 
will begin to "freeze out." The polarizabil- 
ity of that electrode will decrease, and the 
electronic states of the [2]catenanes will 
decouple from that electrode. This response 
is, in fact, what we see. In Fig. 4, the peak 
position, taken from the negative bias por- 
tion of the hysteresis ratio (Fig. 2B), is 
plotted versus temperature. As temperature 
is reduced from 310 to 230 K, the hystere- 
sis peak shifts away from the Fermi level of 
the electrodes by -0.4 V. This observation 
is further evidence for the proposed mech- 
anochemical switching mechanism de-
scribed above. 

Control experiments were performed by 
substituting the following for the bistable 
[2]catenane layer in the devices: (i) eico- 
sanoic acid; (ii) DMPA as its monosodium 
salt; (iii) the tetracationic cyclophane, name- 
ly, cyclobis(paraquat-p-phenylene),anchored 
with DMPA counterions (21); and (iv) a 
monostable degenerate [2]catenane ( l l ) ,  
wherein the same tetracationic cyclophane is 
interlocked with bis-p-phenylene-34-crown- 
10 (BPP34C10) and is also anchored with 
DMPA counterions. Although a very small 
amount of hysteresis (<I% of the principal 
devices) was observed in the I-V curves of 
some of these controls, it decayed quickly 
over time and was attributable to a residual 
capacitance. The principal devices could be 
operated for more than a month under ambi- 
ent conditions and without packaging. 

These bistable devices exhibited robust op- 
eration under ambient conditions. We intermit- 
tently cycled some of these devices a few hun- 
dred times over a period of 2 months without 
observing substantial changes in their proper- 
ties. The junction resistance between the closed 
and open states of the device dlffers by approx- 
imately a factor of 4, implying that these devic- 
es may, upon further engineering, be useful as 
memory devices but are unlikely to be impor- 
tant for logic applications. 
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