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caveolin. We investigated whether mouse 
BMMCs form caveolae. Mast cells play a 
crucial role in recruiting neutrophils to sites 
of bacterial infection (11, 12). They can also 
phagocytose a wide range of bacteria (13). In 
antibody-deficient conditions, however, these 
cells and other phagocytes support the entry 
and subsequent survival of FimH-expressing 
E. coli (14, 15). 

Caveolar fractions were isolated from 
BMMCs (Fig. 1A). Immunogold microscopy 
of cross sections of BMMCs with caveolin-
specific antibody labeled microvilli and intra­
cellular vesicles (Fig. ID). Thus, although 
BMMCs did not appear to form cavelike 
caveolae in their plasma membranes, vesicu­
lar and plasmalemmal forms of caveolae 
were present. The presence of glycosylphos-
phatidylinositol (GPI)-anchored molecules in 
native caveolae is controversial (16-18). 
We determined that CD48, a GPI-anchored 
molecule, was associated with caveolae of 
BMMCs (Fig. 1, A and C). Confocal micros­
copy of BMMCs revealed colocalization of 
CD48 with caveolin primarily in the plasma 
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Fig. 1. Localization of caveolae and CD48 in BMMCs. (A through C) Fractionation of BMMC lysates 
by means of sucrose gradient centrifugation (16, 27). BMMC lysates were subjected to sucrose 
gradient fractionation, and a portion of each fraction was subjected to SDS-polyacrylamide gel 
electrophoresis (SDS-PAGE) and immunoblotting with a rabbit caveolin I-specific antibody (Trans- 
duction Labs) (A), mouse clathrin heavy chain-specific antibody (Transduction Labs) (B), and rat 
CD48-specific antibody (Serotec) (C). The caveolin- and CD48-enriched membrane complexes 
appeared in the light-density fractions (4 and 5) that corresponded to a white flocculent band in 
the 15 to 25% sucrose interface. These fractions exclude >95% of cellular proteins. Clathrin heavy 
chains, which are associated with clathrin-coated pits, were found in distinct fractions (10 and 11). 
(D) Localization of caveolae in BMMCs. Gold particles representing caveolin were specifically 
localized to the microvilli and t o  intracellular vesicles (arrows). (E) Confocal micrographs of a single 
plane (0.5 ym thick) showing colocalization of CD48 with caveolin primarily in the plasmalemmal 
regions of BMMCs. Antibody labels: CD48 (green), caveolin (red), and colocalization (yellow) (28). 

membrane (Fig. lE), whereas caveolin 
staining in the interior of BMMCs was 
vesicular. 

CD48 represents the mast cell receptor for 
FimH-expressing bacteria (19). Binding to this 
receptor induces bacterial entry into BMMCs, 
with limited loss of bacterial viability (IS). We 
investigated whether plasmalemmal caveolae 
of BMMCs, which contain CD48, were in- 
volved in the entry of type 1 funbriated and 
FimH-expressing E. coli. The binding of chol- 
era toxin B (CTXB) to G,,, clustered within 
cell surface caveolae, triggers caveolae-mediat- 
ed internalization of these toxin subunits (20). 
Pretreatment of BMMCs with increasing con- 
centfations of CTXB resulted in up to 60% 
inhibition of FimH-expressing bacterial entry 
(Fig. 2A), suggesting that the toxin had usurped 
available plasmalemmal caveolae and impeded 
subsequent uptake of FirnH-expressing bacte- 
ria. However, CTXB did not have any effect on 
the internalization of latex beads by BMMCs 
(Fig. 2A). Cyclodextrin is a drug that specifi- 
cally disrupts caveolar structure by e l i i t i n g  
cholesterol from the cell (21). In the pres- 
ence of increasing concentrations of cyclo- 
dextrin, entry of FimH-expressing bacteria 
into BMMCs exhibited a dose-dependent in- 
hibition (Fig. 2B). Cyclodextrin had no effect 
on the uptake of latex beads or of opsonized 
or unopsonized FimH- E. coli by BMMCs 

(Fig. 2B). Thus, the entry of FimH-express- 
ing bacteria into BMMCs appears to involve 
plasmalemmal caveolae and FimH. 

Fluorescence microscopy of BMMCs 
with caveolin-specific antibody after expo- 
sure to bacteria revealed accumulation of 
caveolin around internalized bacteria, which 
suggested that bacterial uptake by BMMCs 
was accompanied by specific recruitment of 
cellular caveolae (Fig. 3, A and B). To verify 
this, we probed infected BMMCs with other 
markers of caveolae. We found similar re- 
cruitment patterns with G,, (Fig. 3, C and D) 
and with cholesterol (Fig. 3, E and F), con- 
firming that caveolae were being specifically 
mobilized to sites of bacterial entrv. Immu- 
noelectron microscopy with caveolin-specific 
antibody also revealed the accumulation of 
caveolin around the bacteria (Fig. 3K). No 
more than one bacterium was found in a 
single chamber, implying that caveolae-me- 
diated endocytosis was a progressive process 
involving uptake of individual bacterium, and 
thus appeared distinct from the mode of entry 
of salmonella, in which multiple organisms 
are internalized in a single phagocytic event 
(22). No caveolar markers accumulated 
around BMMC-internalized latex beads (Fig. 
3, H to J). 

We further investigated whether some cel- 
lular caveolae were diverted to chambers en- 

CTXB concentration (ugml) 

Fig. 2. Specific inhibition of the entry of FimH- 
expressing bacteria into BMMCs by a caveolae- 
usurping agent, methyl-P-CTXB (A), and a 
caveolae-disrupting agent, cyclodextrin (B). In 
(A), BMMCs grown on a 96-well plate or cover 
slips were pretreated with increasing concen- 
trations of CTXB (0 to 80 yglrnl) for 20 min. 
Either E. coli ORN103(pSH2), expressing type 1 
fimbriae (29) at a MOI of 100, or fluorescent 
latex beads (0.75 pm in diameter, Polysciences) 
at a MOI of 300 were added. After incubation 
for 20 min at 37OC, the cells were assayed (14, 
30) for uptake of bacteria (black bars) or latex 
beads (white bars). In (B), BMMCs grown on a 
96-well plate were pretreated with increasing 
concentrations of cyclodextrin (0 to 10 mM) for 
10 min in the presence of 10 yM lovastatin. 
The entry of FimH-expressing E. coli (black ban) 
and latex beads (open bars) was examined as 
described above. As additional controls, the entry 
of opsonized FimH- E. coli (hatched bars) and 
unopsonized FimH- E. coli (gray bars) was as- 
sayed. The FimH- E. coli used was E. coli strain 
ORN103(pUT2002) which is an isogenic deriva- 
tive of ORN103(pSH2) (29). Opsonization was 
performed by incubation of FimH- E. coli with 
mouse anti-E. coli antibody (1:200 dilution). The 
MOI of opsonized FimH- E. coli was 100, whereas 
the MOI of the unopsonized FimH- E. coli was 
1000. All internalization assays were performed in 
serum-free RPMI-Hepes buffer. The viability of 
BMMCs and bacteria was not affected by the 
treatments with either CTXB or cyclodextrin. 

casing intracellular bacteria. We therefore de- 
veloped a fractionation technique that al- 
lowed us to simultaneously isolate bacterium- 
containing chambers and cellular caveolae 
from the same infected BMMC. To detect 
bacterium-containing fractions, we prela- 
beled bacteria with fluorescein isothiocyanate 
(FITC) before exposure to BMMCs. Local- 
ization of caveolae in each fraction was 
achieved with the use of a caveolin-specific 
antibody as probe. With the modification of a 
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previously described procedure (23,24), infect- 
ed and uninfected (control) BMMCs were ho- 
mogenized in detergent-free alkaline conditions 
and were fractionated over a discontinuous su- 
crose density gradient. Some cellular caveolae 
shified from fractions 6 and 7 for uninfected 
BMMCs (Fig. 4A) to fractions 8 through 10 for 
infected BMMCs (Fig. 4B). Densitometric anal- 
ysis of the caveolin bands indicated that frac- 
tions 8 to 10 contained 59% of total cellular 
caveolin. Fluorometric assays of the various 
fractions from infected BMMCs revealed that 
the majority of bacteria localized (65%) to frac- 
tions 8 through 10, with the peak residing in 
fraction 9 (Fig. 4E). Electron microscopic ex- 
amination of thin sections of material in fraction 
9 showed the presence of clumps of bacteria- 
containing vesicles (Fig. 4E, inset). Thus, cellu- 
lar caveolae appeared to be diverted to form 
bacteria-encasing compartments. No caveolin 
was detected in the pellet where the remaining 
35% of the bacteria were localized (Fig. 4, B 
and E). It is presumed that these bacteria were 
extracellular because free FITC-labeled bacte- 
ria, when subjected to fractionation in a parallel 

Fig. 3. Specific recruitment of caveolar rnark- 
ers, caveolin, C,,, and cholesterol toward 
sites of bacterial entry. BMMCs were exposed 
to bacteria (A through F and K) or beads (G 
through J), then probed with specific markers 
for caveolae (37) and viewed by fluorescence 
(right), differential interference contrast im- 
aging (left), or standard imrnunoelectron mi- 
croscopy (K). Caveolin (A and B), G,, (C and 
0). and cholesterol (E and F) were recruited 
around internalized bacteria (arrows). No ac- 
cumulation of either caveolin (G and H) or 
G,, (I and j) was detected around internalized 
beads (arrowheads point to representative 
beads). (K) Accumulation of caveolin (irnrnu- 
nogold-labeled) around several intracellular 
bacteria (labeled B). Of the total cell-associ- 
ated gold particles, 57% were around intra- 
cellular bacteria. 

assay, localized only to the pellet. The localiza- 
tion of clathrin (fractions 9 and 10) remained the 
same in uninfected (Fig. 4C) and in infected 
(Fig. 4D) BMMCs. This indicated a lack of 
involvement of clathrin in this endocytic process 
and that the presence of bacteria did not alter the 
properties of the gradient. 

We have shown that bacterial FimH spe- 
cifically couples to its complementary recep- 
tor, CD48, clustered within plasmalemmal 
caveolae in mast cells. This interaction re- 
sults in BMMC bacterial uptake mediated by 
cellular caveolae, which formed distinct in- 
tracellular bacterial containment chambers. 
Because caveolae do not h s e  with endo- 
somes (25), it is not surprising that E. coli 
contained in caveolar chambers avoid the 
intrinsic bactericidal activity of BMMCs and 
remain viable. Although the toxin subunit of 
Vibrio cholerae and FimH-expressing E. coli 
bind distinct receptors on the plasma mem- 
brane and are of markedly different sizes, 
entry of both into BMMCs is mediated by 
caveolae. These observations reveal conver- 
gence among different bacterial species in 
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Fig. 4. Cofractionation of caveolar membrane 
complexes with intracellular bacteria in infect- 
ed BMMCs. (A and B) Detection of caveolar 
fractions from uninfected (A) and infected (B) 
BMMCs. BMMC homogenates were fractionat- 
ed over a 5 to 45% discontinuous sucrose 
gradient (24). Eleven fractions, including the 
pellet, were collected and subjected to SDS- 
PACE and immunoblotting with antibody to 
caveolin. For uninfected BMMCs, a thick white 
flocculent band was seen at the 25 to 35% 
sucrose interface corresponding to fractions 6 
and 7. For infected BMMCs, the white floccu- 
lent band was markedly thinner and a moder- 
ately thick yellow flocculent band was present 
at the 35 to 45% sucrose interface correspond- 
ing to fractions 8 to 10. (C and D) Localization 
of clathrin heavy chain in fractions from un- 
infected (C) and infected (D) BMMCs. (E) 
Detection of FITC-labeled bacteria in caveo- 
lae-containing fractions. The majority of bac- 
teria were found in fractions 8 to 10, which 
correspond to where the displaced caveolin 
and the yellow flocculent band fractionated. 
The FlTC label on the bacteria explains the 
yellow color of the flocculent band. (Inset) An 
electron micrograph of a cross section of 
material isolated from fraction 9. 

their capacity to coopt cellular trafficking 
pathways of the host. They also illustrate the 
remarkable versatility of caveolae as media- 
tors of a broad range of endocytic processes. 
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