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of new, chemically durable and radiation- 
tolerant hosts for safe and reliable storage 
of radioactive wastes and surplus actinides. 
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Aggregation-Based Crystal Growth 
and Microstructure Development 

in Natural Iron Oxyhydroxide 
Biomineralization Products 
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Crystals are generally considered to grow by attachment of ions to inorganic 
surfaces or organic templates. High-resolution transmission electron micros- 
copy of biomineralization products of iron-oxidizing bacteria revealed an al- 
ternative coarsening mechanism in which adjacent 2- to 3-nanometer particles 
aggregate and rotate so their structures adopt parallel orientations in three 
dimensions. Crystal growth is accomplished by eliminating water molecules at 
interfaces and forming iron-oxygen bonds. Self-assembly occurs at multiple 
sites, leading to a coarser, polycrystalline material. Point defects (from surface- 
adsorbed impurities), dislocations, and slabs of structurally distinct material are 
created as a consequence of this growth mechanism and can dramatically 
impact subsequent reactivity. 

In natural systems, growth of crystals has work indicates that additional self-assembly- 
typically been thought to occur by atom-by- based coarsening mechanisms can operate in 
atom addition to an inorganic or organic tem- certain nanophase materials under some con- 
plate or by dissolution of unstable phases ditions (1-7). Here, we show that iron oxy- 
(small particles or metastable polymorphs) hydroxide crystals can grow via an aggrega- 
and reprecipitation of the more stable phase. tion-based pathway under natural conditions 
However, a growing body of experimental and discuss the ways in which this mecha- 

nism can control the form and reactivity of 
nanophase materials in nature. 
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form abiogenically (e.g., due to neutralization 
of acidic iron-rich solutions and as the result 
of chemical weathering of iron-rich miner- 
als). Iron oxyhydroxides (and aluminum oxy- 
hydroxides, which share similar crystal 
chemical characteristics) are common in sur- 
ficial materials and may compose the bulk of 
their reactive surface area. 

We examined samples from the flooded, 
carbonate-hosted piquette Pb-Zn mine be- 
neath T e ~ y s o n ,  Wisconsin (water pH, -8). 
Iron-oxidizing microorganisms congregate in 
redox transition zones within the water col- 
umn in the tunnels. In the -30 years since the 
mine flooded, tens of centimeter-thick orange 
stalactites and stalagmites and slime layers 
have accumulated (Fig. I). 

Samples of the water and slime were col- 
lected by a SCUBA diving team (9). Optical 
and transmission electron microscopic (TEM) 
examination of the slime (with a 200-kV TEM) 

adjacent particles (Fig. 5). However, the paral- 
lelism of lattice fringes demonstrates that the 
crystallographic axes of all particles in this area 
are parallel. We interpret these regions as con- 
sisting of aggegates of particles that share the 
same three-dimensional (3D) orientation (a de- 
fective single crystal). 

We suggest that these crystals formed as 
follows. It is well established that bacteria such 
as the Gallionella spp. and the Leptotlirix spp. 
enzymatically oxidize dissolved ferrous iron. 
Due to the low solubility of fenic iron com- 
pounds at near-neutral pH, immediate solution 
supersaturation with respect to fenihydrite sol- 
ubility occurred. Most of the -2- to 3-nm 
diameter particles formed in solution and either 
attached to surrounding negatively charged 
polymers (e.g., Gallionella stalks) or flocculat- 
ed to form colloidal aggregates. The double 
layers separating surfaces of adjacent particles 
may have been eliminated after repulsive inter- 

revealed that it consists of colloidal aggregates actions were overcome as the result of random, 
of nanoparticles, mineralized cell products, and Brownian motion-driven particle collisions. 
cells (Fig. 2). The twisted stalks are character- 
istic of iron-oxidizing bacteria belonging to the 
Gallionella genus. Sheathed elongate cells are 
typical of bacteria belonging to the iron-oxidiz- 
ing Lepthothrir genus (10). 

Colloids and coatings on organic cell, stalk, 
and sheath materials consist of -2- to 3-nm 
diameter Fe-rich particles (Fig. 3). Selected area 
electron diffraction (SAED) patterns typically 
showed rings with di&e intensity at -0.25 
and 0.15 run, indicating the sample consists 

These collisions may have been especially ef- 
fective because the double layer of each particle 
contained very little net charge because the pH 
was close to the average isoelectric point of iron 
oxyhydroxide crystal surfaces. Jiggling of 
nanoparticles by Brownian motion may also 
allow adjacent particles to rotate to find the 
lowenergy configuration represented by a co- 
herent particle-particle interface. Rotation of 
particles within aggregates may also be driven 
by short-range interactions between adjacent 

mostly of randomly oriented two-line fenihy- surfaces (15). In aggregation-based growth, re- 
drite (11-14) (Fig. 3). In regions ranging from duction in surface free energy is achieved by 
a few nanometers to hundreds of nanometers, complete removal of pairs of surfaces. 
however, the primary nanoparticles were not TEM data showed oriented aggregates with- 
randomly oriented, but were ordered into clus- in spatially confined regions G a i t e d  from 
ters and chains (Fig. 4). This was most pro- other adjacent regions of oriented particles by 
nounced at the peripheries of mineralized or- areas that were dominated by particles in ran- 
ganic material (stalks and sheaths) and in col- dom orientations. This suggests that oriented 
loidal aggregates. Low contrast between crys- aggregation was initiated at multiple sites with- 
talline (lattice-fringebearing) regions in higher in colloids. The orientation adopted within one 
resolution images indicated that space separated region was unrelated to that in an adjacent 

Fig. 1. Photograph tak- 
en undennrater in the 
Piquette mine showing 
accumulations of or- 
ange, polymer-laden 
feGc iron oxyhydrox- 
ides. Tens of centime- 
ter-wide dumps of sus- 
pended material were 
displaced by passage of 
the leading diver. Image 
courtesy of T. O'Connor. 

region. Therefore, we predict that coarsening 
will lead to a polycrystalline material composed 
of larger particles. Oriented aggregation was 
most commonly detected in colloids and in 
particle aggregates at the peripheries of bacte- 
rial stalks and sheaths. We attribute the less 
extensive coarsening of fenihydrite bound to 
stalks and cell sheaths to the inhibition of crys- 

Fig. 2. TEM image of Gallionella stalks (C) and 
a Leptothrix sheath (L). Contrast associated 
with the stalks and sheath is due to nanopar- 
ticulate iron oxyhydroxides. Colloidal aggre- 
gates of nanoparticles (c) are also present. 

Fig. 3. HRTEM images of - 2 to 3 nm diameter 
iron oxyhydroxide particles. Insets are Fourier 
transforms (FT) of image regions showing di- 
agnostic interplanar spacings (in nanometers), 
and selected area electron diffraction pattern 
(left) is typical of two-line ferrihydrite. 
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tal rotation by interactions between the particles 
and the polymer substrate. It is possible that the 
distinctive stalk or cell morphologies (potential 
biosignatures) will be preserved by textural dif- 
ferences, including smaller particle size com- 
pared to surrounding materials. 

Crystal growth by oriented attachment has 
important implications for subsequent mate- 
rials reactivity. Phase stability can be particle 
size-dependent, so crystal growth can pro- 
mote phase transformation (16-19). Phase 
transformation is also induced if initial pre- 
cipitates are metastable. In our samples, laths 
of goethite (FeOOH) (Fig. 6A) are inter- 
grown within regions of coarsened ferrihy- 
drite. Observed crystal orientations (Fig. 6B) 
ensure the maximum continuity between the 
closest packed oxygen planes of goethite and 
ferrihydrite, which is presumed to be the 
goethite precursor. Goethite can form from 
femhydrite largely by relocation of a subset 
of iron atoms into adjacent face-sharing oc- 
tahedral sites and small displacements of ev- 
ery fourth oxygen plane. 

Fig. 4. TEM image of 
an area within a col- 
loidal aggregate of 
ferrihydrite nanocrys- 
tals. Chains and aggre- 
gates indicate self-as- 
sembly of particles. 

Surfaces of nanocrystalline iron oxyhy- 
droxides in the environment are active ad- 
sorption sites (e.g.. for arsenate or phosphate 
in acidic solutions and metals in alkaline 
solutions). If aggregation-based growth oc- 
curs. adsorbed ions at particle surfaces may 
be incorporated as point defects. This could 
decrease the bioavailability of these ions and 
could modify the thermodynamic properties 
and kinetic behavior of the material. 

Previous experimental studies have shown 
that line defects (3) are introduced when growth 
occurs by oriented aggregation. Dislocations 
form at interfaces when surfaces of adjacent 
oriented particles are not atomically flat. Such 
dislocations are common at low-angle grain 
boundaries in arrays of ferrihydrite particles and 
are present in goethite (Fig. 6A). These defects 
can findamentally impact subsequent coarsen- 
ing (e.g.. by spiral growth) and deformation. 

Oriented attachment requires coherence in 
the two-dimensional (2D) plane of the inter- 
face. This can be achieved in a way that ensures 
perfect structural continuity across the interface. 

Fig. 5. HRTEM image of an ag- 
gregate of ferrihydrite nanocrys- 
tals. Low contrast between crys- 
talline regions (lattice fringes) 
indicates that space separates 
most particles. Lattice fringe ori- 
entations and FT (inset) demon- 
strate that particles have been 
assembled so they share a single 
crvstallo~raphic orientation (see 
web fig.i, A through F, for more 
examples) (24). 

or new 3D structural units can be created (4.5). 
These units may be characteristic of a more 
stable phase and provide nuclei for the phase 
transformation. Thus, planar defects introduced 
during growth by oriented attachment can in- 
crease rates of subsequent reactions by lower- 
ing the activation banier. In the case of femi- 
hydrite, incomplete double chains of Fe octa- 
hedra. similar to the double chains found par- 
allel to [001] goethite, can be created at 
coherent interfaces (20). Schwemnann et (11. 
(21) showed that recrystallization and transfor- 
mation were enhanced by particle aggregation. 
Our results provide an atomistic explanation for 
these phenomena. 

Aggregation may occur at finer scales 
than reported here. Assembly of multinuclear 
clusters (22) may be a very early crystalliza- 
tion step. Periodic. few-octahedra-wide va- 
cancies characteristic of (six-line) ferrihydrite 
(14) are explained if ferrihydrite is construct- 
ed from subnanometer-scale clusters, which 
are also formed by aggregation of aqueous 
ions (23). Thus, crystals may grow by assem- 
bly of increasingly large units in a process 
analogous to the formation of hundred-nano- 
meter-wide particles from few-nanometer-di- 
ameter particles (as in Fig. 5). This pathway 
may dominate over dissolution-recrystalliza- 
tion if the phase is relatively insoluble. 

Fig. 6. (A) HRTEM image of goethite containing 
three edge dislocations interpreted to have 
formed due to imperfectly oriented aggrega- 
tion (see Web fig. 2, A and B, for more exam- 
ples) (24). (B) HRTEM image showing the fer- 
rihydrite-goethite interface, reactant, and prod- 
uct orientations. These are consistent with 
growth of goethite directly from ferrihydrite 
(see Web fig. 3) (24). 
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Diaminocarbocations (or amidinium salts) feature a three-center 4a electron 
system w i th  an open planar structure. Their 2 ~ i  electron three-membered cyclic 
valence isomers, i n  which the carbon atom bears a negative charge, are pre- 
dicted t o  be about 541 kilojoules per mole higher in  energy than the open form. 
This isomer has not been identified yet. In contrast, the attempted synthesis 
of a diphosphorus analog of amidinium salts leads t o  the cyclic carbanionic 
form. There is no precedent for such a transformation of a carbocationic center 
into a carbanionic center, but wi th  the help of heavier main-group elements, 
numerous examples can be imagined. This approach wi l l  enable the preparation 
of many unknown structural moieties that are difficult or even impossible t o  
access in  the corresponding carbon and nitrogen series. 
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the carbon atom bearing a negative charge 
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amidinium salt I, (R = R' = H) to be 541 
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Wmol more stable than its unknown cyclic 
valence isomer 11,. Several factors indicated 
that the difference in energy between the va- 
lence isomers I, and 11, should be much small- 
er than in the nitrogen series. (i) A stable allylic 
structure of type I (a three-center 4 v  electron .-
system) implies a large singlet-triplet energy 
separation, which amounts to 379 kJlmol for 
the parent compound I, but only 163 Wmol 
for I, (R = R' = H). This is due mainly to the 
much smaller inversion barrier at nitrogen (21 
kJlmol) than at phosphorus (146 Wmol), which 
favors .rr bonding. In addition, T bonds between 
phosphorus and carbon are much weaker than 
those for nitrogen (P=C, 188 Wmol; N=C, 271 
Wmol), which disfavors the allylic structure I,. 
(ii) Phosphorus-carbon bonds are longer than 

Fig. 1. Diamino- and diphosphino-substituted 
carbocations I and their cyclic valence isomers 
II. 
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