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TCA-TAA). We confirmed by SDS-polyacrylamide gel 
electrophoresis (PACE) that the mutant donor plas- 
mids express wild-type levels of LtrA protein. 

16. In 29 of 39 mobility products, the group I intron 
spliced using the normal 5' and 3' splice sites, and 
eight used cryptic 5' splice sites at LI.LtrB positions 
1810 (six clones), 1985 (one clone), and 2185 (one 
clone). 

17. pACD-AORF+ORFl (Fig. ID) is a derivative of pACD- 
AORF (75). The donor intron has a deletion in the 
loop of intron domain IV, which removes most of the 
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required for binding the LtrA protein [H. Wank, J. San 
Filippo, R. N. Singh, M. Matsuura, A. M. Lambowitz, 
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plasmid (1.9-kb Sca I-Sal I fragment of pACD-LtrB 
filled in with Klenow polymerase inserted into the 
Fsp I site). pACD-AORFsORF2 is a derivative of 
pACD-AORF+ORFl that contains shorter exons (26 
bp of El preceded by a Hind Ill site and 11 bp of E2 
followed by a Pst I site) to facilitate manipulation of 
the IBS and 8' sequences. 

18. Reverse splicing assays showed that RNP particles 
from cells expressing pACD-AORF+ORFl (AORF in- 
tron) insert intact intron RNA, whereas those from 
cells expressing pACD-LtrB (full-length intron) insert 
partially degraded intron RNA (5). SDS-PACE showed 
that pACD-AORFiORFl and pACD-LtrB express sim- 
ilar levels of LtrA protein. 
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sciencemag.org/feature/data/1050641.shl). 
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segments of the target DNA into the Xho I site of the 
polylinker of pBRR-Tet (73) by blunt-end ligation 
after filling in sites with T4 DNA polymerase. Target 
DNAs were inserted in both the sense and antisense 
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25. The combinatorial intron library pACD-DL was con- 
structed in pACD-AORF+ORF2 (77) by inserting ran- 
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pairs with the randomized EBS sequences for RNA 
splicing. The randomized sequences were introduced 
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PCR amplifying a segment extending from position 
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Universal positive correlations between different cognitive tests motivate the 
concept of "general intelligence" or Spearman's g. Here the neural basis for g 
is investigated by means of positron emission tomography. Spatial, verbal, and 
perceptuo-motor tasks with high-g involvement are compared with matched 
low-g control tasks. In contrast to the common view that g reflects a broad 
sample of major cognitive functions, high-g tasks do not show diffuse recruit- 
ment of multiple brain regions. Instead they are associated with selective 
recruitment of lateral frontal cortex in one or both hemispheres. Despite very 
different task content in the three high-g-low-g contrasts, lateral frontal re- 
cruitment is markedly similar in each case. Many previous experiments have 
shown these same frontal regions to be recruited by a broad range of different 
cognitive demands. The results suggest that "general intelligence" derives from 
a specific frontal system important in the control of diverse forms of behavior. 

As discovered by Spearman (I)early in the last 
century, measures of performance or success in 
diverse cognitive tests show a pattern of almost 
universal positive correlation: To some extent 
at least, the same people tend to perform well in - & 

very different tasks. To explain this result, 
Spearman put forward the hypothesis of a gen- 
era1 or g factor making some contribution to 
success in diverse forms of cognitive activity. 
People with high g scores will be those usually 
performing well, leading to the interpretation of 
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g as "general intelligence." Factor analysis can 
be used to show which tasks are most correlated 
with g and are thus the best general intelligence 
measures; often, these turn out to be tests of 
novel problem solving such as Raven's Pro- 
gressive Matrices (2). alternative hypothe- 
sis, originally proposed by Thomson (3), has 
also received detailed consideration. According 
to this hypothesis, any task receives contribu- 
tions from a large set of component factors or 
information-processing functions. Universal 
positive correlation arises not for any common 
reason, but simply because any two tasks are 
likely to share at least some components. The 
"g factor" measured by standard intelligence 
tests is now interpreted as the average efficien- 
cy of the total set of cognitive functions (4); as 
Thomson showed, tasks with high apparent g 
correlations will be those sampling the total set 
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Fig. 1. Example test items for each task. Each A Spatial
item consisted of four display elements (draw- 
ings or letter sets), and the task was t o  identify 
the element that in some sense mismatched or high.g w1
differed from the others. In each task, partici- 
pants completed as many items as possible in a 
fixed period of 4 (behavioral sessions) or 2 (PET 
sessions) min, after 0.5 min of practice. (A) low-g I. mmMaterials for the high-g spatial task were 
adapted with permission from a standard non- 
verbal test of g, Cattell's Culture Fair, Scale 2 B Verbal 
Form A and Scale 3 (7 7). Display elements were 
four panels, each containing one or more high-g L H E c D F I M TQN K H J MQ 
shapes, symbols, or drawings. One panel dif- 
fered in some respect from the others; exten- ,ow.g Qs C H  , L M N O  I 
sive problem solving was required t o  identify 
this panel because the difference could concern c Circles
any property, often abstract and/or complex. In 
the example shown the relevant property is 
symmetry; the mismatching panel is the third jqmmHin the row. In the low-g spatial control task, in 
contrast, there was minimal problem solving. In 
each display, the four panels each contained a 
single geometrical shape, three of which were physically identical whereas the fourth differed in some 
visually obvious respect (shape, texture, size, orientation, or a combination of these). (B) Materials for 
the high-g verbal task were adapted with permission from a standard letter-based problem-solving task, 
Letter Sets from the ETS Kit of Factor-Referenced Tests (24).The high g loading of the original test was 
established by analysis of a large preexisting data set (25).Display elements were four sets of four 
letters each. One set differed in some respect from the others; again, the task required extensive 
problem solving because a variety of alphabetic and other rules could distinguish the mismatching letter 
set in any given test item. In the example the mismatching set is the third, whose letters are equally 
spaced in the alphabet. In the low-g verbal control task, the task was simply to  find the one set in each 
display whose letters were not in strict alphabetical order. (C) Displays in the circles task were based 
with permission on two drawings taken from a single item of the Cattell Culture Fair (77). As illustrated, 
in one drawing the smallest circle was toward the center of the overall figure, whereas in the other i t  
was toward the periphery. Again there were three identical panels (all small circles central, or all 
peripheral), and the task was to  identify the single panel with the alternative arrangement. For all tasks, 
displays were presented on an Apple Macintosh monitor; horizontal display extent was approximately 
12" for spatial tasks, 19" for verbal tasks. The position of the mismatching element was indicated by 
pressing the corresponding key on a four-choice keyboard, operated with middle and index fingers of 
the two hands. The screen cleared when a response was made, and a new test item was presented after 
a pause of 500 ms. In problem-solving tasks, participants were encouraged not to  guess but to  work on 
each problem until they were confident of their answer. These arrangements ensured that participants 
worked continuously throughout the period of each task, despite long solution times for problem- 
solving items but much shorter times for control items. 

of cognitive functions most broadly. The inde- would imply. According to this hypothesis, 
terminacy of factor analysis has made it impos- tasks with high g correlations should be char- 
sible to &stinguish these alternative hypotheses acterized by specific recruitment of prefrontal 
from correlational data, and after almost a cen- cortex. The alternative-directly implied by the 
tury of debate, both are still vigorously defend- Thomson hypothesis-is that increasing g cor- 
ed (5).Here we use positron emission tomog- relations should be associated with an increas- 
raphy (PET) to investigate the neural basis for g ingly diverse pattern of neural activation, re- 
and the light this casts on Spearman's and flecting increasingly broad sampling of all ma- 
Thomson's interpretations. jor cognitive functions. 

One possibility-more closely allied to the Our method took advantage of the psycho- 
Spearman view-is that g may reflect some metric fmding that tasks with very different 
relatively confined set of neural functions, surface content can share the property of high g 
broadly contributing to success in diverse cog- correlation (8).Thus, converging investigations 
nitive tests. In recent years, in particular, simi- of several high-g tasks can be used to ask what 
larities have been noted between some effects property these tasks share at the level of neural 
of frontal lobe lesions and the normal behavior activity. In our first test, we used problem- 
of people from the lower part of the g distribu- solving tasks based on spatial and verbal mate- 
tion, suggesting that frontal functions may be rials. In each case, we began by adapting stan- 
particularly central to g (6). Though frontal dard psychometric tests whose g correlations 
functions are not well understood-as reflected were known to be high. Example problems 
in rather general information-processing con- from spatial and verbal tasks are shown in Fig. 
cepts such as executive control, strategy forma- 1, A and B. In two large-N behavioral studies, 
tion, or monitoring the contents of working we confirmed high g correlations in the adapted 
memory (7)-certainly they are important in a task versions (9) (Table 1). For each task, we 
wide diversity of behavior, as a major role in g developed a corresponding low-g control, based 

Table 1. Behavioral data for all tasks. Correlations 
with standard measures of g derive from one 
(spatial and circles tasks) or two (verbal tasks) 
behavioral studies conducted before the PET ex-
periment (9). Correlations for verbal tasks are 
averages from the two studies calculated by Fish- 
er's z-transform. Ndenotes number of participants 
contributing to each correlation, excluding cases 
with missing data. 

Task g correlation (r) N 

Spatial 
High-g 0.59 56 
LOW-g 0.37 54 

Verbal 
High-g 0.55 103 
LOW-g 0.41 102 

Circles 
0.67 53 

on similar materials but without the problem- 
solving element. Again, behavioral pretesting 
confirmed the lower g correlations of these 
newly developed control tasks. In all cases, 
tasks were designed to keep the participant 
continuously active, despite wide variations in 
the time taken to respond to individual test 
items. We then used PET to compare each 
high-g problem-solving task with its corre-
sponding low-g control (10). 

Regions of significantly greater blood flow 
(P < 0.05, corrected for multiple comparisons) 
in high-g compared with low-g tasks are shown 
in Fig. 2, A (spatial comparison) and B (verbal 
comparison) (11). Corresponding peak activa- 
tions appear in Table 2. In the spatial compar- 
ison, the strongest high-g activations occurred 
bilaterally in the lateral prefrontal cortex, and in 
a discrete region of the medial frontal gyrusl 
anterior cingulate. Elsewhere in the brain, acti- 
vations were restricted to the posterior visual 
system, presumably reflecting more extensive 
visual analysis andlor the effects of eye move- 
ments, and to discrete regions of parietal and 
premotor cortex, recruited in a wide range of 
visuospatial tasks (12). These results resemble 
those previously seen in comparisons of 
Raven's Progressive Matrices with simple sen- 
sorimotor controls (13). For the verbal compar- 
ison, the only significant high-g activation oc- 
curred in the lateral frontal cortex of the left 
hemisphere, closely corresponding to the simi- 
lar activation in the spatial comparison. 

Such results argue strongly against the pos- 
sibility that high-g tasks are associated with 
diffuse neural recruitment, as predicted by 
broad sampling of the brain's major cognitive 
functions. Examination of the data at a less 
conservative significance threshold (P < 0.001 
uncorrected) did not change this conclusion; in 
the spatial comparison, there was simply a 
strengthening of the major activation foci 
shown in Fig. 2, whereas in the verbal compar- 
ison, frontal activation was accompanied by 
weak occipital activations resembling those 
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Table 2. Peak activations for each high-g minus 
low-g task contrast. Coordinates [x,y, z in space of 
Montreal Neurological Institute (MNI) template] 
and selection of foci are according t o  the conven- 
tions of SPM99. Brain regions (approximate Brod- 
mann areas) are estimated from Talairach and 
Tournoux (23), after adjustment (www.mrc-cbu. 
cam.ac.uk/lmaging/mnispace.html) for differences 
between MNI and Talairach coordinates. 

Brain region Coordinates z score 

Spatial (P < 0.05 corrected) 
L lateral frontal 

46 -52.44 4 
46 -52, 32, 26 
47 -48.32. -8 
8 -34, 10, 40 

R lateral frontal 
46 56, 30, 24 
45 64, 20, 16 
46 48,44,12 
6 40,12,64 

R medial frontal 
8 2, 26, 46 

L parietal 
711 9 -26, -66.40 

R parietal 
4017 48, -56, 50 

L occipital 
18 -24, -104, -10 
18 -38, -94, -8 

R occipital 
18 40, -94, -6 
19 46, -74, -12 

Verbal (P < 0.05 corrected) 
L lateral frontal 

46 -54.32.22 
47 -50,32, -8 
10146 -50,46,0 

Circles (P < 0.007 uncorrected) 
R lateral frontal 

46 56, 28, 26 
9 44, 34, 36 
6 38, 4, 50 
6 44, 12, 62 

L occipital 
18 -24, -104, -10 
18 -6, -82, 2 

R occipital 
18 24, -102, -8 

shown for the spatial contrast. Neither did glob- 
al blood-flow measurements suggest greater 
diffuse activity in high-gtasks (14). Instead, the 
data strongly favor the hypothesis that lateral 
frontal functions are selectively recruited by 
high-g tasks. 

Our behavioral development work suggested 
a converging test of this conclusion. There was 
considerable variation in g correlations among 
various candidates we investigated for the role 
of low-g spatial control task. Although the rea- 
sons for this variation are unknown, it allowed 
us to select a M e r  task for inclusion in the 
PET experiment whose g correlation was high 
despite a simple physical-match format and no 
strong element of problem solving [Fig. 1C; for 
behavioral data see Table 1 and (1511. The new 
task was compared with our standard low-g 
spatial control, to which it was identical except 

c Circles 

Fie. 2. Significant activations for three 
c&trastc rendered onto canonical 
TI-weighted brain image o f  SPM99. 
(A) Spatial high-g minus spatial low-g 
(P < 0.05 corrected for multiple com- 
parisons). (B) Verbal high-g minus 
verbal low-g (P < 0.05 corrected). (C) 
Circles minus spatial low-g (P < 0.001 
uncorrected). 

for the exact shapes used in the stimulus array. 
At the threshold of P < 0.05 corrected for 
multiple comparisons, there were no frontal dif- 
ferences between these two tasks. At the less 
conservative threshold of P < 0.001 uncorrect- 
ed, however, the higher g task was associated 
with lateral frontal activation in the right hemi- 
sphere (Fig. 2C and Table 2), closely corre- 
sponding to the similar activation in our main 
spatial contrast. 

Evidently, a neural system associated with 
Spearman's g should be recruited by many 
different forms of cognitive demand. In a recent 
analysis of imaging findings, indeed, we have 
shown that diverse forms of demand, including 
task novelty, response competition, working 
memory load, and perceptual difficulty, pro- 
duce broadly similar lateral frontal activations 
covering a region closely similar to the frontal 
activations seen here (16). On the medial sur- 
face, all these demands are also associated with 
specific recruitment of the dorsal part of the 
anterior cingulate, close to the medial frontal 
activity seen here only for the spatial problem- 
solving task. If future work shows this medial 
activity also to be generally associated with 
different high-g tasks, this will suggest an in- 
terpretation of g in terms of a specific frontal 
network important in the brain's response to 
diverse cognitive challenges. 

To show that g is associated with a relative- 
ly restricted neural system is not, of course, to 
show that it cannot be divided into finer func- 
tional components. For the future, indeed, a 
central problem will be development of more 
detailed models of g in terms of component 
frontal functions and their interactions. Mean- 

while, the almost century-long debate between 
rival theories of g reflects the interpretational 
limitations of correlational data. The present 
data offer hope that the neural basis for g may 
prove a more tractable problem. They suggest 
that g reflects the function of a specific neural 
system, including as one major part a specific 
region of the lateral frontal cortex. 
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Guanosine 5'-triphosphate (GTP)-binding proteins (G proteins) are involved in  
exocytosis, endocytosis, and recycling of vesicles in  yeast and mammalian 
secretory cells. However, l itt le is known about their contribution t o  fast syn- 
aptic transmission. We loaded guanine nucleotide analogs directly into a giant 
nerve terminal in  rat brainstem slices. Inhibition of G-protein activity had no 
effect on basal synaptic transmission, but augmented synaptic depression and 
significantly slowed recovery from depression. A nonhydrolyzable GTP analog 
blocked recovery of transmission from activity-dependent depression. Neither 
effect was accompanied by a change in presynaptic calcium currents. Thus, G 
proteins contribute t o  fast synaptic transmission by refilling synaptic vesicles 
depleted after massive exocytosis. 

Fast synaptic transmission is mediated by quan- nerve terminal, the calyx of Held, visually iden- 
tal packets of neurotransmitters released from tified in slices of rat brainstem (8). In this 
synaptic vesicles through exocytosis (I). When preparation, presynaptic Ca2+ currents (Ipc,) 
the synaptic vesicles in the readily releasable and glutamatergic excitatory postsynaptic cur- 
pool (RRP) are depleted, they are replenished rents (EPSCs) can be recorded simultaneous- 
through vesicle recycling from a reserve pool ly while drugs of given concentrations are 
(2). In yeast and mammalian secretory cells, a applied into the nerve terminal through a 
variety of G proteins are involved in vesicle whole-cell pipette (9, 10). 
endocytosis, trafficlung, and exocytosis (3). In paired pre- and postsynaptic recordings, 
However, the functional role of G proteins in EPSCs were evoked stably at 0.1 Hz in a 
fast synaptic transmission remains unclear. postsynaptic principal cell in the medial nucleus 
Synaptic transmission can be blocked by gua- of trapezoid body (MNTB) by presynaptic ac- 
nine nucleotide analogs (4) or Rab3A-binding tion potentials elicited at the calyx of Held 
peptides (5) injected into squid giant nerve ter- (9-1 1). Application of guanosine 5 ' -0 - (2 -
minals, suggesting that monomeric G proteins thiodiphosphate) (GDPPS, 3 to 6 mM) into 
such as Rab3A may contribute to exocytosis (4, the calyx through pipette perfusion blocked 
6). In contrast, exocytosis is Inhibited by over- G-protein activity, as indicated by a marked 
expression of Rab3A or Rab3 regulator proteins reduction of the baclofen-induced EPSC in- 
in secretory and hippocampal cells, suggesting hibition (I2), but had no effect on EPSCs 
that this G protein may negatively modulate (Fig. 1A) (mean amplitude 10 min after in- 
exocytosis (7). As a step toward clarifying the fusion = 107 ? 9.8% of control, n = 4). 
individual roles of G proteins, we studied the Thus, presynaptic G-protein activity is not 
overall contribution of presynaptic G-protein immediately required for basal synaptic 
activity to fast synaptic transmission by infus- transmission. 
ing guanine nucleotide analogs into the giant We next examined whether G-protein ac- 

tivity is involved in synaptic depression. 
Department of Neurophysiology, University of Tokyo EPSCs were evoked by Ip,, at 0.1 Hz (9, 11). 
Faculty of Medicine, Tokyo 113-0033, Japan. After a stable epoch, a train of 30 stimuli at 
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460 	 21 JULY 2000 VOL 289 SCIENCE www.sciencemag.org 

mailto:ttakahas-tky@umin.ac.jp

