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Negative Regulation of the  
SHAmERPROOF Genes by  

FRUITFULL During Arabidopsis  
Fruit Development  

Cristina Ferrandiz,* Sarah J. Liljegren,* Martin F. Yanofsky'r 

The terminal step of fruit development in  Arabidopsis involves valve separation 
from the replum allowing seed dispersal. This process requires the activities of 
the SHATTERPROOF MADS-box genes, which promote dehiscence zone differ- 
entiation at  the valve/replum boundary. Here we show that the FRUITFULL 
MADS-box gene, which is necessary for fruit valve differentiation, is a negative 
regulator of SHATTERPROOF expression and that constitutive expression of 
FRUITFULL is sufficient t o  prevent formation of the dehiscence zone. Our studies 
suggest that ectopic expression of FRUITFULL may directly allow the control of 
pod shatter in  oilseed crops such as canola. 

The fruit mediates the maturation and dis- tively expressed from the cauliflower mosaic 
persal of seeds and is derived from the female virus 35s promoter (3-5) to determine if FCL 
reproductive structure. the gynoecium. The is sufficient to specify valve cell fate in ec- 
Arnbidopsis fruit, which is typical of more topic positions. The most striking phenotype 
than 3000 species of Bmssicaceae, consists caused by the 35S::FUL transgene is the con- 
of an apical stigma. a short style, and a basal version of cells within the valve margin and 
ovary that contains the developing seeds (Fig. outer replum to valve cells (Fig. 1).  Conse-
1A). The peripheral walls of the fruit are quently, the dehiscence zone, which normally 
referred to as valves and are connected on forms at the valve margin (Fig. 1, A and C), 
both sides by a thin structure known as the fails to differentiate in 35S::FUL fruit (Fig. 1. 
replum. At the valvelreplum boundary, a nar- B and D). Thus, like shattevpvoof (shpl shp2) 
row band of cells differentiates into the de- loss-of-function mutants (6), 35S::FUL gain- 
hiscence zone (l),  where the separation of cells of-function plants produce indehiscent fruit 
late in fruit development allows valve detach- and fail to disperse their seeds normally. 
ment from the replum and seed dispersal. Because lignification is thought to play an 

Because FRUITFULL (FUL) is required important role in the dehiscence process (I), 
for the expansion and differentiation of fruit and because the SHP genes promote lignifi- 
valves after fertilization (2) ,  we generated cation of cells adjacent to the dehiscence 
transgenic plants in which FUL is constitu- zone (6), we examined the lignification pat- 

terns of 35S::FUL and fir1 fruit compared 
with that seen in the wild type (7).  whereas 

Section of Cell and Developmental Biology. University 
of California Sari Diego, La Jolla, CA 92093-01 16, a sing1e layer is lignified in 
USA. wild-type fruit (Fig. lE), all of the internal 
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tent loss of lignified cells adjacent to where 
the dehiscence zone normally forms. There- 
fore, FUL is necessary to prevent ectopic 
lignification of certain valve cells, and con- 
stitutive expression of FUL is sufficient to 
prevent valve margin lignification. 

The similarities between the indehiscent 
phenotypes of 35S::FUL and shpl shp2 h i t ,  
together with the complementary expression 
patterns of FUL and SHP (3,  8, 9), suggest 
either that FUL negatively regulates SHPI/2, 

(Fig. 2, G and H). Therefore, SHPlR do not 
negatively regulate FUL RNA accumulation. 

The observation that SHPIR are ectopi- 
cally expressed throughout the valves officl 
mutants suggested that some of the ful mutant 
phenotypes could be due to ectopic SHP ac- 
tivity. To investigate this possibility, we com- 
pared shpl shp2ficl h i t  (12) toficl h i t  (Fig. 
3). While they appeared very similar (Fig. 
3A), shpl shp2fiil h i t  exhibited tears in the 
valves due to seed crowding (Fig. 3, B and C) 

35S::EUL fruit, ectopic GT140 expression in 
ficl fruit could be entirely due to ectopic SHP 
activity. To investigate this possibility, we also 
analyzed expression of the GT140 marker in 
shpl shp2ficl fruit. GT140 was still expressed 
throughout the triple-mutant valves (Fig. 2L), 
although at a reduced level relative to that seen 
inficl valves (Fig. 25). These data suggest that 
EUL negatively regulates GT140 expression 
and demonstrate that SHP activity is not abso- 

Fig. 1. Constitutive expression of FUL converts cells of the valve margin and outer replum into valve 
cells. Scanning electron micrographs (A and B) and transverse sections of fruit stained with 
toluidine blue (C and D) or phloroglucinol (E to  C) at stage 17 (A to F) or stage 18 (G). In wild-type 
fruit (A, C, and E), cells at the valve margin differentiate into the dehiscence zone (DZ), and 
lignification of the valve inner subepidermal layer (lv) and small patches of valve margin cells (vm) 
adjacent to  the dehiscence zone occurs. 35S::FUL fruit (B and D) have reduced styles (sty) and 
appear radially uniform, as cells within the valve margin and outer replum (r) regions closely 
resemble wild-type valve (v) cells. Because of these cell fate conversions, dehiscence zone 
differentiation and valve margin lignification do not occur in 35SFUL fruit (D and F). In contrast, 
ful fruit (G) show ectopic lignification of the valve mesophyll (me) layers; stg, stigma; gu, guard 
cells; vb, vascular bundle. Bars, 100 ym. 

and GT140 expands thrAghout the valves (v) of 
ful-2 fruit [B, J, and (77)] and is not detected in 
35S::FUL fruit (C, D, and K). In shp7 shp2 ful-2 
fruit (L), expression of GT140 is detected 
throughout the valves at reduced levels. FUL is 
expressed in wild-type fruit valves (E) and does 
not expand beyond the valves of shp7 shp2 fruit 
(F). In 35SSHP1 35SSHP2 ful-7/+ fruit (H), 
FUL:GUS expression does not appear reduced as 
compared with that seen in ful-7/+ fruit valves 
(G). Bars, 100 ym. 
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Fig. 3. Mutations in SUP7 and SUP2 partially 
suppress the valve differentiation defects of ful 
fruit and largely eliminate valve tearing. (A) 
Like ful-7 fruit, shp7 shp2 ful-7 fruit (stage 17) 
are much shorter than the wild type, due to the 
lack of valve expansion after fertilization. Valve 
tears (arrowhead) are present in nearly all ful-7 
fruit (B) and are rarely seen in shp7 shp2 ful-7 
fruit (C). Guard cells (gu) are present in wild- 
type and shp7 shp2 ful-7 fruit valves (D and F) 
and are not found in ful-7 fruit valves (E). Bars, 
100 pm. 

lutely required for GT140 expression in fir1 
mutant valves, indicating that additional genes 
are involved in activating this marker. 

The data presented here, together with 
other recently published observations, al- 
low us to propose a model (Fig. 4) for some 
of the genetic interactions underlying valve 
margin development. The SHP genes are 
positively regulated by the AGAMOUS 
MADS-box gene product (8, 9) and are 
required for proper valve margin develop- 
ment (6). Besides directing valve differen- 
tiation (2), FUL negatively regulates SHP 
expression, ensuring that valve margin cell 
fate occurs only at the valve boundary. 
Although not shown in the model, SHP112 
may negatively regulate a replum-specific 
factor; expansion of such a factor's activity 
in shpl shp2 fruit could account for the 
observed slight restriction of FUL valve 
expression (Fig. 2, E and F). Expression of 
the GT140 valve margin marker is positive- 
ly regulated by SHPlI2 ( 6 )  and negatively 
regulated by FUL, which may occur by way 
of an additional factor (factor X) involved 
in GT140 activation. 

Fig. 4. Genetic interac- 
tions involved in valve 
margin development. 

valve valve rnargi'n 
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lnterdigital Regulation of Digit 
Identity and Homeotic 

Transformation by Modulated 
BMP Signaling 

Randall D. Dahn and John F. Fallon* 

The developmental mechanisms specifying digital identity have attracted 30 
years of intense interest, but still remain poorly understood. Here, through 
experiments on chick foot development, we show digital identity is not a fixed 
property of digital primordia. Rather, digital identity is specified by the inter- 
digital mesoderm, demonstrating a patterning function for this tissue before its 
regression. More posterior interdigits specify more posterior digital identities, 
and each primordium wil l  develop in accordance with the most posterior cues 
received. Furthermore, inhibition of interdigital bone morphogenetic protein 
(BMP) signaling can transform digit identity, suggesting a role for BMPs in this 
process. 

Although the signaling pathways that broadly 
establish polarity along the three axes of the 
developing S i b  bud are rapidly being elucidat- 
ed (I), the downstream mechanisms that exquis- 
itely pattern adult morphology are not well un- 
derstood. For instance, in the developing chick 
limb bud the posterior mesodermal zone of po- 
larizing activity (ZPA) controls anteroposterior 
(AP) polarity through expression of the Sonic 
hedgehog (Shh) gene (2). However, the mecha- 
nisms by which early asymmetry is translated 
into the characteristic differences in phalangeal 
number and morphology that define digital 

Department of Anatomy, University of Wisconsin, 
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*To whom correspondence should be addressed. E- 
mail: jffallon@facstaff.wisc.edu 

identity are not understood. Application of ec- 
topic SHH protein (SHH-N) or ZPA cells to the 
anterior border of early-stage limb buds elicits 
mirror-image patterns of digit duplication in a 
dose- and timedependent manner (2,3). A re- 
cent report suggests that in the early limb bud, 
SHH acts long range to control digit number and 
short range to establish a BMP2 morphogen 
gradient that specifies digit identity in a dose- 
dependent fashion by progressively promoting 
anterior digital precursors to more posterior 
identities (4). This hypothesis implies that A/P 
positional value is specified during early limb 
bud stages under direct SHH influence and, by 
the time digital rays are forming, A P  positional 
value is a fixed property of digital primordia. 
Here, we employ both embryological and mo- 
lecular methodologies to demonstrate that the 
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