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where overburden is thick and decreases vertical 
effective where overburden is thin' These 
pressure and stress profiles are created 
differential loading and variations in rock prop- 
e*ies (such as and bulk 
ibility) and do not require any other mechanism 
to lower the permeability and increase overpres- 
sure (39, 40). The model provides a simple 
mechanism for overpressure generation and 
slope failure in basins around the world by 
providing an explanation for high overpressures 
that begin at shallow depth on the middle and 
lower slope, neseresults revitalize the hypoth- 
esis that geO-
morphology (3b32). The lateral flow predicted 
describes how compaction-dnven flow can con- 

the 	 and of 
cold seeps and the commUnities that thrive on 
the solutes in the seep fluids. 
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Timing the Radiations of Leaf 

Beetles: Hispines on Gingers 

from Latest Cretaceous to  


Recent 
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Stereotyped feeding damage attributable solely t o  rolled-leaf hispine beetles 

is documented on latest Cretaceous and early Eocene ginger leaves from North 

Dakota and Wyoming. Hispine beetles (6000 extant species) therefore evolved 

a t  least 20 million years earlier than suggested by insect body fossils, and their 

specialized associations wi th  gingers and ginger relatives are ancient and phy- 

logenetically conservative. The latest Cretaceous presence of these relatively 

derived members of the hyperdiverse leaf-beetle clade (Chrysomelidae, more 

than 38,000 species) implies that many of the adaptive radiations that account 

for the present diversity of leaf beetles occurred during the Late Cretaceous, 

contemporaneously w i th  the ongoing rapid evolution of their angiosperm hosts. 


Insects and flowering plants (angiosperms) tures of terrestrial ecosystems (I).Diagnostic 
comprise most terrestrial biodiversity, and insect damage on fossil angiosperms is a 
their trophic associations are dominant fea- primary source of data for understanding the 

evolution of these associations and can also 
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aquatic shaded habitat provided by the rolled 
juvenile leaves of gingers, heliconias, and 
their relatives (order Zingiberales) in under- 
stories of Neotropical forests (Fig. 1) (8-13). 
The feeding marks of larval rolled-leaf 
hispines are stereotyped (9) (Fig. 1) and re- 
main intact on the mature unrolled leaves, 
increasing their potential for fossilization. 

The family Chrysomelidae, or "leaf bee- 
tles," has -38,000 described species (14) 
and a possible total diversity of >60,000 
species (15). Most extant leaf beetles con- 
sume angiosperms, indicating a series of 
adaptive beetle radiations (7). The subfamily 
Hispinae (-6000 species) (7, 13, 15-17) is 
considered to be among the more derived and 
specialized groups within the Chrysomelidae 
(6, 7). The Hispinae and its putative sister 
group (-5000 species) (Fig. 2) comprise a 
clade that includes most extant species of 
monocot-feeding beetles (18). 

The bodv-fossil record of leaf beetles is 
virtually nonexistent during the Late Creta- 
ceous (7, 19), the time interval known for 
rapid evolution and diversification of angio- 
sperms (20), and the record of most angio- 
sperm-feeding Chrysomelidae is confined to 
the Cenozoic (7). The first appearance of 
Hispinae, in particular, is in the middle Eo- 
cene, and the rolled-leaf hispines have no 
fossil record (Fig. 2). This lack of temporal 
resolution limits understanding of the timing 
of chrysomelid radiations in relation to the 
evolution of angiosperm host plants, whose 
Cretaceous fossil records are far more com- 
plete than those of leaf beetles (5, 21, 22). 

Here, we report diagnostic feeding pat- 
terns, of the type documented for larvae of 
living rolled-leaf hispines in Central America 

Fig. 1. Recent and fossil (Cephaloleichnites strongi) hispine damage on Zingiberales (29). (A) is live; 
(B) and (D) are pressed specimens from the U.S. National Herbarium; (C), (E), (H), and (I) are from 
the early Eocene; and (F) and (C) are from the latest Cretaceous (28,29). (A) Chelobasis perplexa 
Baly larva feeding on a leaf of Heliconia curtispatha Petersen (collected in Chiriqui Province, 
Panama). The arrows indicate damage trails with irregular margins that are deployed perpendicular 
to leaf venation. (0) Hispine damage of the type noted by the arrows in (A) on Heliconia vaghalis 
Bentham [U.S. National Herbarium (US) 3134380, collected in Costa Rica]. (C) C. strongi (holotype) 
on Zingiberopsis isonervosa Hickey (USNM 498174). (D) Hispine damage on Renealmia cernua 
(Swartz) Macbride (Zingiberaceae), a close relative of Zingiberopsis (Fig. 3) (US 1153643, collected 
in Panama). Extended linear slot feeding is visible. (E) C. strongi, single slot of the type shown in 
(D) (USNM 498168). (F and C)  C. strongi on Z. attenuata Hickey and Peterson [DMNH 19957, (F); 
DMNH 19959, (C)]. (H and I) C. strongi on Z. isonervosa [USNM 509718, (H); USNM 498169, (I)]. 
Scale bars in all panels equal 5 mm, except in (C), where the scale bar is 1 mm. 

sp. nov., for the fossil insect damage (29). leaves of Heliconia, a relatively basal mem- 
The best fit of current phylogenetic data ber of the Zingiberales (Fig. 3) that is host to 

to the fossils suggests a basal member of a a high diversity of rolled-leaf hispines (a), are 
derived group, the Hispinae, feeding on a notably lacking in defensive compounds, and 

(9), on 11 specimens of latest Cretaceous and derived monocot host (Figs. 2 and 3). An experimental data show negligible effects of 
early Eocene Zingiberopsis (Fig. 1). This adaptive trajectory within the phylogeny of Heliconia chemistry on the larval develop- 
well-described leaf genus, a fossil member of Hispinae and their close relatives is depict- ment of rolled-leaf hispines (11). Corre- 
the ginger family (Zingiberaceae), is known ed in Fig. 2, which starts on aquatic and spondingly, we have also observed, in her- 
from Late Cretaceous through earliest Oligo- semiaquatic dicots and then shifts to mono- barium collections, a relatively low frequen- 
cene strata of North America and from the cot host plants (stages 1 to 4 in Fig. 2) (18). cy and intensity of hispine damage on Zin- 
early Late Cretaceous of Germany (23-26). 
The nearest living relative of Zingiberopsis is 
considered to be the Asian genus Alpinia (24) 
(Fig. 3). Of the 11 insect-damaged specimens 
studied, 7 were Z. isonervosa from the early 
Eocene Wasatch Formation, Great Divide 
Basin, southwestern Wyoming (26-28). The 
remainder were three specimens of Z. attenu- 
ata, from the latest Cretaceous Hell Creek 
Formation, and a single specimen of Z. ison- 
ewosa from the early Eocene Camels Butte 
Member of the Golden Valley Formation; all 
four specimens are from the Williston Basin, 
southwestern North Dakota (28). The damage 
consists of individual (Fig. 1E) or sequential 
(Fig. 1, C and F through I) linear feeding 
strips that are bounded by reaction tissue and 

C. strongi documents the extension of the 
semiaquatic life-style inland to the wet 
rolled-leaf habitat of Zingiberales (stage 5 
in Fig. 2). Host shifts by higher hispine taxa 
occurred on terrestrial monocots and, for 
the "cassidoid" group, on dicots (stages 6 to 
8 in Fig. 2). 

The present-day occurrence of rolled-leaf 
hispines on six of the eight families of Zin- 
giberales (13) raises the question of the order 
of colonization within Zingiberales. Plant 
chemistry is thought to be a primary con- 
straint and selective force on the host shifts of 
Chrysomelidae and other herbivorous beetles 
(30). The Zingiberaceae as a group possess 
well-developed phytochemistry, and several 
compounds with potentially defensive uses 

giberaceae in comparison to Heliconia. The 
preceding evidence suggests an initial colo- 
nization of basal, chemically "simple" Zin- 
giberales, which led to the diverse associa- 
tions with living Heliconia, followed by 
adaptive radiations of specialized hispines on 
the Zingiberaceae by the Maastrichtian or 
earlier. 

C. strongi predates the body-fossil record 
of Hispinae by -20 million years, document- 
ing the Cretaceous origins of the group (Fig. 
2). As the fossil records of many living lin- 
eages of monocots begin in the Campanian 
and Maastrichtian (5), our data demonstrate 
the presence and trophic activity of derived, 
specialized, monocot-feeding beetles near the 
time of the first appearances of present-day 

have asymmetrically rounded termini, as de- have been extracted from Alpinia leaves in host groups. In addition, the recent discovery 
scribed in detail below (29). We propose the particular, including tannins, phenols, alka- of a fossil sagrine beetle (19) indicates the 
ichnotaxon Cephaloleichnites strongi, gen. et loids, and diverse terpenes (31). In contrast, presence of the sister group to the hispines by 
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Fig. 2. Hypothesized 
evolutionary coloniza- 
tion of angiosperms by 
hispine beetles and their 
immediate ancestors, 
with the corresponding 
fossil record of bee- 
tles and their feeding 
damage (79, 36). At 
the left is a phyloge- 
ny of hispine tribes 
(blue) (73) and subfam- 
ilies and tribes of its 
putative sister group 
(green) (37), with an 
empty branch repre- 
senting all other Chry- 
somelidae; dashed lines 
indicate groups without 
published phylogenies, 
inserted on the basis of 
morphological evidence 
(38). Approximate num- 
bers of described spe- 
cies (spp.) are indicated 
for these three branch- 
es, using (74) for the 
total of 38,000 and (7) 
for the blue and green 
clades. The two tribes of 
rolled-leaf hispines are 

BEETLES 

27WO sm. 

in capital letters. Rele- e b f o & h h &  
vant body fossils of in- 
sects are almost entirely confined to Cenozoic Lagemen. At the top right is 
a dadogram of all major monocot lineages and several representative clades of 
basal dicots, which is a compromise topology among recently hypothesized 
evolutionary relationships based on both molecular and morphological charac- 
ters (39-47). The Lower right indicates dominant (red squares) and subdominant 
(orange squares) plant hosts for chrysomelid clades at the left (6, 42-44); 
numbered red clusters represent inferred major colonization stages. The matrix 
reflects larval herbivory, almost all of which is deployed as external feeding or 
leaf mining. The overall trajectory of primitive aquatic dicot to advanced 

2'0 l'o d ma ASSOCIATIONS 

monocot to core eudicot host colonization is indicated by the stippled arrow; 
secondary colonizations of core eudicots (43), as supported by beetle ph Log 
enies, are designated by smaller arrow (6.45). The colonization of core eu lco i  
by "cassidoid hispines is primary (43,44). The actual history of colonization is 
undoubtedly more complex than depicted, and the time scale refers only to 
fossil occurrences. not to branchine events. The blank sections of the time scale 
are "Pliocene" and "Pleistocene," f i m  Left to right Cam. = Campanian; Maa. = 
Maastrichtian; Pal = Paleocene; Olig, = Oligocene; Donac = Donaciinae; C = 
Criocerinae; s = Sagrinae; Bruch = %ruchoi8complex. 

the Campanian (Fig. 2). Taken together, the Fig. 3. The phylogenetic relationships of 
the families of the order Zingiberales 
and the major clades of the family Zin- 
giberaceae, with a hypothesized place- 
ment for the fossil ginger Zingiberopsis. 
Commelinales is used as the outgroup. 
The cladogram of living taxa is derived 
from parsimony analyses of morpholog- 
ical and molecular (rbcL, atpB, matK, 
185 RNA, and internal transcribed spac- 
er regions) characters (39, 46). Zingib- 
eropsis is inserted as a sister to its living 
relative with the greatest morphologi- 
cal similarity, Alpinia (23, 24). 

cretaceous hispine-and sagrine occurrences 
indicate a high likelihood that many other 
clades o f  leaf beetles evolved well before the 
terminal Cretaceous. 

Angiosperm diversity exceeded that o f  other 
groups of land plants by the early Late Creta- 
ceous (20). The rapid evolution of angiosperms 
continued throughout the Late Cretaceous (22), 
and 44% of extant angiosperm orders have 
Cretaceous fossil records, including most living 
lineages (21). Thus, Cretaceous radiations of 
leaf beetles occurred during an extended inter- 
val o f  evolutionary innovation for angiosperms, 
suggesting the possibilities o f  plant-beetle co- Order Ungiberales w 
evolution or o f  adaptive beetle radiations that 
closely followed the diversification of angio- Cretaceous (32) and profound climate chang- References and ~~t~~ 
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