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Overpressure and Fluid Flow in 
the New Jersey Continental 
Slope: Implications for Slope 

Failure and Cold Seeps 
Brandon ~ u g a n *  and Peter B. Flemings 

Miocene through Pleistocene sediments on the New Jersey continental slope 
(Ocean Drilling Program Site 1073) are undercompacted (porosity between 40 
and 65%) to 640 meters below the sea floor, and this is interpreted to record 
fluid pressures that reach 95% of the lithostatic stress. A two-dimensional 
model, where rapid Pleistocene sedimentation loads permeable sandy silt of 
Miocene age, successfully predicts the observed pressures. The model describes 
how lateral pressure equilibration in permeable beds produces fluid pressures 
that approach the lithostatic stress where overburden is thin. This transfer of 
pressure may cause slope failure and drive cold seeps on passive margins around 
the world. 

Rapid sediment loading (>1 mm yearp1) is around the world (1, 2). A suite of models 
documented as a source of overpressure (P*, describe how overpressure is generated during 
pressure in excess of hydrostatic) in basins rapid deposition (3-6). These models quantify 

the rock properties and sedimentation rates re- 
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State University, University Park, PA 16802, USA. Mass and volume measurements of wet and dry 
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Fig. 1. (A) Bathymetric map 
of the New Jersey conti- 
nental slope (47). ODP 
(Ocean Drilling Program) 
Leg 174A Site 1073 is Locat- 
ed in 639-111 water depth 
on a smooth portion of the 
slope (7). (B) Two-way 
travel time (M) dip 
seismic line 1002 shows 
the regional Miocene- 
Pleistocene stratigraphy 
(7). Black lines identify age 
boundaries (bdry). In the 
smooth zone, Pleistocene 
sediments completely 
cover the Miocene strata, 
whereas where canyons 
are present, the Miocene is 

R E P O R T S  

exposed (42). 

Jersey continental slope (Fig. 1). Forward sed- 
imentation models are used to simulate the 
spatial and temporal evolution of pressure and 
stress for the slope. 

We divide the porosity (+) at Site 1073 
into three depth intervals (Fig. 2). Zone 1 
extends from the sea floor to 100 mbsf 
(meters below sea floor), where porosity ex- 
ponentially decreases from 62 to 45%. Zone 2 
is 450 m thick, underlies zone 1, and has 
constant porosity (+ = 45%). Zone 3, the 
deepest section, begins with an abrupt in- 
crease in porosity that is followed by a rapid 
porosity decrease. These porosity zones may 
record three distinct pressure regimes: zone 1 
is normally compacted and hydrostatically 
pressured; zone 2 is underconsolidated, over- 
pressured, and has a lithostatic fluid pressure 
gradient; and zone 3 is underconsolidated, 
overpressured, and has a hydrostatic fluid 
pressure gradient. 

We quantify this interpretation by cou- 
pling porosity and vertical effective stress 
(a, = S, - p a  - P*) (2, 8). 

where +, is a reference porosity, P is the bulk 
compressibility, S, is the overburden, p, is 
the water density, g is the acceleration due to 
gravity, and z is the depth below sea surface. 
This relation is constrained (+, = 61% and 
p = 0.44 MPa-I) in zone 1 (8-10). After 
constraining p and +,, Eq. 1 is rearranged 
and porosity is used to predict overpressure 
deeper in the section. The regression (Eq. 1) 
and pressure prediction (Eq. 2) are only per- 
formed on clay and silt. 

In zone 1, where the model was constrained, 
predicted pressures are hydrostatic. Predicted 
pressures in zone 2 are 95% of the lithostatic 
stress (Fig. 2). The predicted pressures at the 
top of zone 3 approach the lithostatic stress 
and remain constant at 4.8 MPa through the 

Fig. 2. Core data from ODP Site 1073 
(Fig. 1) (7). Porosity was determined 
from wet and dry measurements of 
mass and volume of core samples. Val- 
ues denoted by P* are overpressures 
predicted from porosity. The solid line 
on the P* plot is the reduced lithostatic 
stress (5, - p,gz). Diffusion modeled 
Sr2+ and Cl- profiles are solid lines; 
observations are circles. Pleistocene 
sedimentation rates far exceeded Mio- 
cene and Pliocene sedimentation rates 
as inferred from biostratigraphic data. 

zone. The constant overpressure indicates a 
hydrostatic fluid pressure gradient in zone 3. 

A sedimentation-compaction model (3, 
11) is used to simulate the fluid pressure 
evolution for the New Jersey slope at Site 
1073. The model solves Eq. 3 with a finite 
element approach. 

where k is the permeability, p. is the fluid 
viscosity, and S, is the storage coefficient (12, 
13). 

The model assumes that sediment loading 
(DS,/Dt) is the only source of fluid pressure, 
the sediments compact according to Eq. 1, 
and fluid flow follows Darcy's law. The base 
of the model is a no-flow boundary. The 
upper boundary (sea floor) is a constant- 
pressure boundary (P* = 0). All sediments 
are deposited with 61% initial porosity (4,) 
and with a bulk compressibility (P) equal to 
0.44 MPa-' as determined at Site 1073. 
Compaction is assumed to be irreversible 
(14-16). The vertical permeability (k,) as- 
signed to the Plio-Pleistocene sediments is 
1 X lo-" m2. The permeability is con- 

strained by experiments on nearby sediments 
of similar age and lithology (1 7). The model 
permeability for the Miocene strata is higher 
(k, = 3 x 10-l6 m2) than that of the Plio- 
Pleistocene sediments because they are coars- 
er grained (Fig. 2). The horizontal permeabil- 
ity (k,) for all sediments is one order of 
magnitude greater than k,. 

In the one-dimensional (ID) model, the 
Miocene sediments are assumed to be hydro- 
statically pressured before they are loaded by 
the Plio-Pleistocene strata. The modeled Plio- 
Pleistocene sedimentation rate follows that 
observed at Site 1073 (Fig. 2). At the end of 
the Plio-Pleistocene deposition, modeled 
pressures for zone 1 exceed those predicted 
from porosity (Fig. 3A). Modeled pressures 
in zones 2 and 3 reach only 25% of the 
porosity-predicted pressures (Fig. 3A). To 
match the porosity-predicted pressures, the 
model permeability must be decreased by two 
orders of magnitude. This is representative of 
a clay and is unrealistically low for the silt- 
dominated New Jersey slope (18, 19). 

In the two-dimensional (2D) model, a 20- 
krn-wide, 0.1-km-thick layer of hydrostatical- 
ly pressured, permeable Miocene sandy silt is 
buried for 1 million years by lower perme- 
ability Plio-Pleistocene silt and clay (Fig. 3). 
The model sedimentation rate (DS,/Dt) de- 
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creases linearly from the left boundary to the tions are 5% less than those observed from 350 
to 500 mbsf. These results suggest that the pore- 
water chemistry is dominated by diffusive mass 

drainage and maintain hydrostatic pressure as is 
right boundary and varies temporally in 
agreement with the observations at Site 1073 
(Fig. 2). 

The 2D model predicts a large lateral flux 
along the higher permeability Miocene bed, 
where Darcy velocities reach 7 mm year-I 
(Fig. 3B). At the toe of the Miocene strata, 
fluids are expelled laterally and vertically 
upward with an average Darcy velocity of 0.5 
mm yearWL. At the left edge of the model 
domain, where deposition is most rapid, flu- 
ids flow slowly (< 0.05 mm yearpL) upward 
to the sea floor and downward to the perme- 
able Miocene section. The shallow Pleisto- 
cene sediments (< 100 mbsf) have slow flow 
with Darcy velocities <0.005 mm year-I. 

Lateral pressure transfer toward the deltaic 

observed. Two effects may control the differ- 
ence between modeled and porosity-predicted 
pressures in zone 3. First, the porosity-vertical 
effective stress behavior inferred from the shal- 

transport. The Darcy velocities predicted by the 
2D flow model may provide the advective trans- 

low sediments may not describe the behavior of 
deeper sediments. A second possible explana- 

port to account for the difference between the 
observed and predicted concentrations. 

The flow model predicts that lateral flow 
along permeable pathways will decrease verti- 

tion is that the Miocene sediments terminite at 
or near Site 1073 (Fig. 3B). In this case, the 
model would predict pressures in zone 3 that are 
closer to the porosity-predicted pressures. 

S8+ and C1- porewater concentrations are 
greatest in the Oligocene section and decrease 
upward to modem seawater values (Fig. 2). 
Brines that originated from dissolution of deeper 
Jurassic salt may be the source of the high C1- 
concentrations (20). Recrystallization or disso- 
lution of Sr-rich carbonates at greater depths 
may have produced the high S8+ concentra- 
tions in Oligocene porewaters (20). We use 
these data as a geochemical tracer to demon- 
strate that the present-day concentrations are 
compatible with the 2D flow model. In a 1D 
diffusion model, we assumed an initial Oligo- 

cal effective stress where overburden is thin. As 
the vertical effective stress decreases (Fig. 3B), 
the sediments will become unstable (23-25). 
Sediment failure on the lower slope may act as 
a catalyst to headward erosion, a mechanism 
that contributes to submarine canyon formation 
(Fig. 1A) (2628). Previous studies suggested 
that high fluid pressures aided canyon forma- 
tion (29-31); however, these studies were ne- 
glected because they called on a permeable 
aquifer that extends hundreds of kilometers 
across the continental shelf to create artesian 
conditions on the slope (32). This lack of hy- 

toe in the 2D model elevates pressures at Site 
1073 relative to the 1D model (Fig. 3A). The 2D 
model pressures in the Plio-Pleistocene section 
(zones 1 and 2) are nearly lithostatic. The mod- 
eled pressures match the porosity-predicted 
pressures from 250 to 500 mbsf (Fig. 3A). In 
zone 3, the model predicts high overpressures 
(68% of the severe porosity-predicted overpres- 
sure~) and a hydrostatic gradient (Fig. 3A). The 
results are consistent with the porosity-predicted 
pressures and gradients in zones 2 and 3, but the 
modeled pressures and gradients exceed the po- 
rosity-predicted pressures in zone l (Fig. 3A). 
The difference between the model results and 
pressures predicted from porosity in zone 1 may 

draulic connectivity from the shoreline to the 
slope prevents topographic flow from contrib- 

cene porewater concentration equal to that ob- 
served today, and we assumed that the overlying 

uting to the elevated pressures on the slope. Our 
flow model suggests that the progradation of 

beds have seawater concentrations. Oligocene 
vorewater concentrations are modeled as con- 

any low-permeability shelf margin over more- 
permeable strata will provide a mechanism to 

stant because of the high-concentration sources 
at depth. S t +  and C1- diffusivities are constant, 
9.3 X lo-'' m2 s-I and 2.5 X m2 s-I, 
respectively, and are scaled for diffusion in a 
porous medium (21,22). The modeled concen- 
trations are less than those observed after 1 
million years of diffusion (Fig. 2). The predicted 

focus flow and generate overpressure, slope 
failure, and slope seeps. Although this is a 2D 
model, we envision that flow will occur in three 
dimensions, outward and along-slope toward 
any zone where the overburden is thin. 

The flow model provides an explanation 
for the origin and distribution of sea-floor 

result from the assumption of constant perme- 
ability. The sediments in zone 1 are probably 
more permeable than the deeper sediments be- 
cause of their high porosity; this would aid fluid 

S8+ concentrations are 50% of those observed 
from 450 to 550 mbsf, and the C1- concentra- 

seeps. ~ l u i d  expulsion would be expected at 
the toe of the slope where the pressure gra- 
dients are high. Seeps and geysers are report- 
ed on the lower slope of the New Jersey 
continental margin (33) and in many other 
rapidly loaded passive margins (34, 35). On 
the New Jersey slope, these seeps will be 
greatest within canyons where high-perme- 
ability Miocene sediments are exposed. 
High-flux seeps may themselves contribute to 
grain-by-grain erosion on the slope and on 
canyon walls (31). Solutes in seep fluids can Darcy 

Velocity + provide energy sources for biological com- 
munities (36, 37). 

The observations at Site 1073 and model 
results for the slove show that the New Jersev 
slope is overpressured and has low vertical ef- 
fective stress below 100 mbsf. Recently discov- 
ered sea-floor cracks offshore Virginia and 
North Carolina may represent unstable condi- 
tions and low vertical effective stresses near the 
continental shelf-slope break (38). Elevated flu- 
id pressures caused by rapid sediment loading, 
as we have modeled, may be a mechanism 
responsible for this slope instability. The model 
predicts that rapid loading in any basin produces 
high pressures near the depocenter and that lat- 

Fig. 3. (A) Normalized plot of overpressures for Site 1073. TD is the total sediment thickness at Site 
1073 and z is the distance below the sea floor. The dashed line is the reduced lithostat. Solid lines 
are one-dimensional model (ID), two-dimensional model (2D), and porosity-predicted (P+) pres- 
sures at Site 1073. Porosity zones and measured depth for Site 1073 are labeled for reference (Fig. 
2). (0) Simulated 2D vertical effective stress (contour interval = 1 MPa), overpressure (color 
contours), and flow fields for the New Jersey slope after 1 million years of simulation. The left edge 
(upper slope) is a no-flow boundary, and the right edge (lower slope) is a constant-pressure 
boundary (P* = 0). The model geometry is constrained from regional seismic data (Fig. IB). The 
white surface is the Miocene-Pliocene boundary. Vertical effective stress is less than 1 MPa for 
much of the section and is <O MPa above the toe of the Miocene bed. The low vertical effective 
stress indicates that the lower slope is at near-failure conditions. 

era1 transfer of pressure creates near constant 
overpressure in permeable lenses. The lateral 
pressure transfer raises vertical effective stress 
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where overburden is thick and decreases vertical 
effective where overburden is thin' These 
pressure and stress profiles are created 
differential loading and variations in rock prop- 
e*ies (such as and bulk 
ibility) and do not require any other mechanism 
to lower the permeability and increase overpres- 
sure (39, 40). The model provides a simple 
mechanism for overpressure generation and 
slope failure in basins around the world by 
providing an explanation for high overpressures 
that begin at shallow depth on the middle and 
lower slope, neseresults revitalize the hypoth- 
esis that geO-
morphology (3b32). The lateral flow predicted 
describes how compaction-dnven flow can con- 

the 	 and of 
cold seeps and the commUnities that thrive on 
the solutes in the seep fluids. 
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Timing the Radiations of Leaf 

Beetles: Hispines on Gingers 

from Latest Cretaceous to  
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Stereotyped feeding damage attributable solely t o  rolled-leaf hispine beetles 

is documented on latest Cretaceous and early Eocene ginger leaves from North 

Dakota and Wyoming. Hispine beetles (6000 extant species) therefore evolved 

a t  least 20 million years earlier than suggested by insect body fossils, and their 

specialized associations wi th  gingers and ginger relatives are ancient and phy- 

logenetically conservative. The latest Cretaceous presence of these relatively 

derived members of the hyperdiverse leaf-beetle clade (Chrysomelidae, more 

than 38,000 species) implies that many of the adaptive radiations that account 

for the present diversity of leaf beetles occurred during the Late Cretaceous, 

contemporaneously w i th  the ongoing rapid evolution of their angiosperm hosts. 


Insects and flowering plants (angiosperms) tures of terrestrial ecosystems (I).Diagnostic 
comprise most terrestrial biodiversity, and insect damage on fossil angiosperms is a 
their trophic associations are dominant fea- primary source of data for understanding the 

evolution of these associations and can also 
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Research Institute, Apartado 2072, Balboa-Ancon, Re- Among the best studied associations between
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