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The structure of the cytoplasmic assembly of voltage-dependent K+ channels 
was solved by x-ray crystallography at  2.1 angstrom resolution. The assembly 
includes the cytoplasmic (T I )  domain of the integral membrane a subunit 
together with the oxidoreductase P subunit in  a fourfold symmetric T14P, 
complex. An electrophysiological assay showed that this complex is oriented 
with fourT1 domains facing the transmembrane pore and four P subunits facing 
the cytoplasm. The transmembrane pore communicates with the cytoplasm 
through lateral, negatively charged openings above the T14P4 complex. The 
inactivation peptides of voltage-dependent K+ channels reach their site of 
action by entering these openings. 

The P subunit of voltage-dependent K+ 
channels is a tetramer of oxidoreductase pro- 
teins arranged with fourfold rotational sym- 
metry like the integral membrane a subunits 
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(I). Each oxidoreductase protein contains an 
active site with catalytic residues and an 
NADPH (the reduced form of nicotinamide 
adenine dinucleotide phosphate) cofactor, but 
the specific substrate is unknown and the 
biological function of the P subunit remains a 
mystery. 

Studies of K+  channel biosvnthesis have 
shown that a and p subunits c'oassemble in 
the endoplasmic reticulum and remain to-
gether as a permanent complex (2, 3). The 
idea that a large macromolecular assembly is 
attached to the intracellular face of voltage- 
dependent K+ channels has important impli- 
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cations for channel regulation, but it also 
raises the question of how the transmembrane 
pore opens to the cytoplasm. This issue of 
Dore access first arose when the T1 domain, 
an about 100-amino acid structure on the 
intracellular side of the first membrane-span- 
ning segment of the a subunit, was found to 
form a tetrameric ring with a narrow, posi- 
tively charged central pore (4). The small T1 
pore diameter and positive charge are incon- 
sistent with functional measurements show- 
ing that organic cations such as tetraethylam- 
monium enter the transmembrane pore (5).  
Even a peptide segment from the channel 
itself (inactivation peptide) is thought to enter 
the pore to produce inactivation (6, 7). How 
can entry of these large molecules be recon- 
ciled in the setting of a narrow T1 pore? By 
analyzing the structure and function of the 
cytoplasmic interface, we resolve this appar- 
ent inconsistency and show how the T1 tet- 
ramer forms a docking platform for the P 
subunit without obstructing the transmem-
brane pathway. 

It has been postulated that the intracellular 
T1 domain interacts with the P subunit (8, 9). 
We reinforced this idea by showing that re- 
moval of the T1 domain, but not the K +  
channel's COOH-terminus, disrupts P sub-
unit association (see below). 

Coexpression of the rat P2 subunit (10) 
(residues 36 to 367) and rat Kvl.1 (11)T1 
domain (residues 1 to 135) in Sf9 cells yield- 
ed a stable complex. The complex was puri- 
fied and crystallized, and its structure was 
determined by molecular replacement with 
the P subunit structure as a search model 
(12). The final model was refined to an R,,, 
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of 0.229 (40 to 2.1 A) (12). Packing of sub-
units within the crystal defined an unambig-
uous interface through which the @ subunit 
and T1 tetramers interact: The large flat sur-
face of p engages four prominent loops (con-
tact loops) extending from the NH,-terminal 
side of the T1 tetramer (Fig. 1). 

Comparison of the isolated T1 and @ sub-
unit structural models with their counterparts 
in the complex reveals only small differenc-
es. One of these is a slight tilt of the T1 
domain subunits with respect to the central 
four-fold axis (4). The tilt results in a sepa-
ration of the subunits at the COOH-terminal 
side, widening the aperture, and a constric-
tion at the NH,-terminal side where T1 con-
tacts the p subunit. 

To confm this complex in vivo, we stud-
ied the interaction of a and @ subunits in 
Xenopus oocytes by measuring inactivation, 
which refers to occlusion of the pore by an 
inactivation peptide (Fig. 2A) (6, 10). The 
inactivation peptide is effective when at-
tached to the NH2-terminus of either the a 
or @ subunits (Fig. 2B), apparently because 
the attachment sites are very near each 
other in the T14P4 complex (Fig. 1C). 
Thus, if the a subunit does not have its own 
inactivation peptide, trans-inactivation caused 
by a P subunit indicates a-@subunit asso-
ciation. Following a described method (lo), 
a Kv1.4 K+ channel without &ninactivation 
gate (Kv1.4-IR) was coexpressed with the 
P2 subunit containing an inactivation gate 
(@I2chimera) (Fig. 2) (13). The T1 do-
main of Kv1.4 is 85% identical to that of 

Fig. 1.Structure of the 
TI$, complex. (A) 
Ribbon representation 
showing four contact 
loops that form the 
primary interface be-
tween the T I  and P 
tetramen. The T1 tet-
ramer is red and the p 
tetramer is blue. (0) 
Molecular detail of a 
TI contact loop touch-
ing the R subunit sur-

Kvl. 1 used in the structure determination. 
When the T1 domain is removed from the 

Kv1.4-IR channel by means of genetic dele-
tion (13) (residues 2 to 278), inactivation is 
not observed in the presence of the @I2chi-
mera (Fig. 2C), implying that the T1 domain 
is necessary for @ subunit association. The 
occurrence of inactivationwhen the inactiva-
tion peptide is on the channel's own NH,-
terminus, even in the absenceof a T1 domain, 
demonstrates that the inactivation process it-
self does not require a T1 domain [Fig. 2C; 
see also (14)l. Thus, the T1 domain does not 
participate directly in inactivation but serves 
to hold the @ subunit in place. 

To determine which amino acids are im-
portant for TI4@,complex formation in vivo, 
we made single-site alterations (13). On the 
T1 domain, only mutations involving contact 
loop residues abolish inactivation (Fig. 2, D 
and E). The effect of the point mutations is 
most compatiblewith disruption of P subunit 
binding to the a subunit: The same mutations 
do not interfere with inactivation caused by a 
gate on the NH2-terminus of the a subunit 
(15). On the P subunit, single-site mutations 
affect inactivation only when introduced onto 
the surface where the T1 contact loops touch 
the @ subunit in the crystal structure (Fig. 2, 
D and E). 

Certain mutations on the @ subunit [e.g., 
Metlg6-,Trp (M196W)l reduce the extent 
of inactivationbut do not abolish it (Fig. 2D). 
In such cases, the inactivating component 
exhibits wild-type kinetics, implying that 
only a fraction of channels contain a @ sub-

faie (24). (C) Stereo-
view of a Ca trace of 
the p tetramer (blue) 
and T I  tetramer (red) 
viewed along the four-

7 E-Y 

unit because the mutant @ subunit has a re-
duced affinity for the a subunit. The possi-
bility of insufficientmutant @ subunit expres-
sion, resulting in a mismatch between the 
numbers of @ and a subunits, is excluded by 
a control experiment. Mutation M196W on 
the @ subunit rescues the loss of inactivation 
caused by T1 contact loop mutation PheZL4 
+Val (F214V) (Fig. 2D). This result offers 
very strong support for the crystallographi-
cally defined structure in the context of a 
living cell. The conclusion that the T1 contact 
loops provide the @ subunit docking surface 
offers insight into the specificity of or-@ sub-
unit assembly: The amino acid sequence of 
the T1 contact loop is highly conserved with-
in a given family of K+ channels but not 
between members of different families. Thus, 
@ land @2subunits associate with Kvl but 
not Kv2 K+ channels (16). 

The aqueous channel down the center of 
the TI,@, complex is too narrow (-4 A and 
positively charged) to allow entry of tetraeth-
ylammonium, a pore-blocking cation, or the 
inactivation peptide (Fig. 3). If not through 
the center of the TI,@, complex, how does 
the ion pathway connect to the cytoplasm? 
We addressed this question by again exploit-
ing inactivation. Inactivation occurs when 
an inactivation peptide binds at or near the 
pore (Fig. 2A). Electrostatic interactions 
help to mediate this process: Mutations of 
basic (positive charged) amino acids on the 
inactivation peptide influence the rate and 
extent of inactivation (17). Therefore, we 
expect to find complementary acidic (neg-

--

fold axis and showing 
the relative proximity of the NH,-termini of each where 
inactivation gates are attached. The NADP+ cofactor in 
each active site is green. This figure was generatedwith the 
programs 0 (25), MOLSCRIPT (26), Raster-3D (27), and 
POVRAY (28). 
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ative charged) amino acids on  the channel 
near the inactivation peptide-binding site. 
The TI-S1 linker (connecting T 1  to the first 
membrane-spanning segment) contains sev- 
eral acidic amino acids. When three o f  these 
residues, located six amino acids COOH- 
terminal to the T 1  structure ( G ~ u ~ ~ ~ ,  
and G ~ u ~ ~ ~ in Kvl.4), are mutated to A la  
(neutral) or Lys (positive), the rates o f  inac- 
tivation and recovery from inactivation are 
affected (18) (Fig. 4, A and B), and mutations 
to Lys (negative to positive) have the largest 
influence. Mutation o f  Val247 to Lys (neutral 
to positive) also reduced the rate o f  inactiva- 
tion (Fig. 4C). Val247 is located on the sur- 
face o f  the T 1  domain close to where the 

TI-S1 linker emerges (Fig. 5). 
Mutations were also made in the inactiva- 

tion peptide to reduce its positive charge. 
These mutations affected inactivation, but 
more importantly their influence depended on 
the charge at positions 273 to 275 in the 
TI-S1 linker. Thus, mutations in the inacti- 
vation peptide are coupled in mutant cycle 
analysis to mutations in the TI-S1 linker near 
the T 1  domain (Fig. 4C) (19). In order for 
such coupling to occur, the peptide must be 
near the TI-S1 linker when it inactivates the 
pore. Because the peptide cannot fit through 
the center o f  the T14P4 complex, it must 
reach the pore b y  entering lateral openings 
above the T 1  tetramer (Fig. 5). 

1 + :  -- I 
Kv1 AIR + $12,1:2 

The structure o f  the T 1  domain tetramer 
seemed to be inconsistent with several de- 
cades o f  K+ channel pharmacology: The cen- 
tral hole is too narrow for many o f  the clas- 
sical organic blocking agents (4). When the 
T 1  domain was deleted from the a subunit, 
the single channel conductance did not change 
substantially, as if the T 1  tetramer does not 
form an extension o f  the pore (20). Thus, it 
was proposed that either the T 1  domain is not 
a tetramer in the context o f  the integral mem- 
brane channel or that ions move between the 
cytoplasm and pore through an alternative 
pathway. 

The data presented here establish that the 
T 1  domain is indeed a tetramer in the K+ 

Kvl.4A31-286 

JL Fig. 2 (Left). Functional analysis of the TI4& interface. (A) Illustration of 
N-type K+ channel inactivation. The black circle represents the inacti- 
vation peptide. (B) Potassium currents recorded from Xenopus oocytes 
under voltage clamp containing channels without an inactivation peptide 

Kv1.4-IR M14V + p12,1:2 (Kv1.4-IR) or with an inactivation peptide attached to  the NH2-terminus 

"I-- 
of the cw subunit (Kv1.4-PIN) or p subunit (Kv1.4-IR + pl2). The cw and 
p subunits were coexpressed at an RNA ratio of 1:2 (v:v) (13). (C) The 
Kv1.4A278 channel lack amino acids 2 to  278, which make up Kv1.4 
channel's own inactivation peptide and T I  domain. The p12 chimera fails 
to  cause inactivation (Kv1.48278 + p12). The Kv1.4831-286 channel 
(amino acids 31 to  286 deleted) lack a T I  domain but contains its own 
inactivation peptide (Kv1.4A31-286), which differs from that of pl2, 

Kv1.44R +$I2 M196W accounting for the slower inactivation rate. (D) (Top) A point mutation 
on the contact loop of the T I  domain (Kv1.4-IR F214V) prevents P I 2  
chimera-induced inactivation (residue Phe73 in Kvl.1) (Middle) Currents 
carried by Kv1.4-IR channels expressed with a mutant p subunit (PI2 
M196W) at two RNA volume ratios, I : I0  and 1 :50, undergo incomplete 
inactivation. (Bottom) Coexpression of Kv1.4-IR F214V mutant a subunit 
and p12 M196W mutant p subunit yields inactivation properties similar 
to  the combination of wild-type a and P.subunits. In all recordings, 
oocytes were held at -80 mV and stepped to  +60 mV for 200 ms. (E) 

Kv1 M R  F214V GRASP view of T I  and p2 subunits showing the effect of selected point 
+ $12 M196W, 1:2 

m 
mutations on channel inactivation (red, alteration; blue, no alteration . 4 o ) NH -terminal surface of the T I  domain. Red residues are Phe7 , 
' T ~  Leu 6, an d Arg7', and the blue residue is Pro75. (Middle) Flat surface of 
the Kvp2 subunit. Red residues are Metlg6, Tyrlg9, Ser200, and GlnZo4, and 
blue residues are ArgZo3, L s268 L s129, and Metlg3. (Bottom) Concave r 1 7  surface of the p subunit Blue residues are Asp66, TyrgO, Lys1? Lys105, Lys106, L y ~ l ~ ~ ,  G I U ~ ~ ~ ,  Gln 48, GIu 50, Asn15', Arg159, ArglS9, Pro260, and 

Pro261. This figure was made with GRASP (29). Fig. 3 (right). The central pore of the TI4P4 complex. A molecular surface calculated over three 
of the four TI-P subunits reveals a central pore with unusual internal electrostatic features. The pore is coincident with the molecular four-fold axis 
and extends the length of the complex. At its apex, it is sufficiently wide to  permit the entry of ions. The inner surface of this cavity is lined with 
charged amino acid side chains that are conserved in the Kvl family. Calculation of the electrostatic potential was carried out at an ionic strength 
equivalent to  0.15 M KCI. Dielectric constants of 2.0 for the protein interior and 80.0 for solvent were used. Regions of the molecular surface exhibiting 
intense negative charge are colored red, and electropositive regions are colored blue. This figure was generated with the program GRASP (29). 
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Fig. 4. Evidence for pore openings above the TI 
domain. (A) (Top) p l2  chimera-induced inactiva- 
tion of wild-type Kv1.4-IR a subunits (WT) and a 
subunits with Ala (A) or Lys (K) substituted at 
positions 273 to 275. (Bottom) Currents from 
wild-type a subunits (WT) or a subunits with Ala 
substituted at 273 to 275 (A) coexpressed with 
the p12 chimera containing a wild-type inactiva- 
tion gate (+pl2) or K13N. R15G mutant inacti- 
vation gate (+ 131 5NG). The experimental condi- 
tions were identical to those described in Fig. 2D. 
(B) (Top) Rate of recovery from inactivation mea- 
sured in paired pulses from a holding voltage of 
-80 mV and stepping the membrane to +60 mV. 
The initial conditioning pulse was 400 ms. The 
dashed curve corresponds to an exponential func- 
tion (T = 11 S) fitted to the envelope defined by 
the peak current of the test pulse. (Bottom) Frac- 
tion of recovery as a function of time between the 
conditioning pulse and the test pulse. W, Kv1.4-IR 
a subunit paired with the PI2 chimera; @, a 
subunit with Ala substituted at 273 to 275 coex- 
pressed with PI2 chimera; 0, a subunit with Lys 
substituted at 273 to 275 coexpressed with pl2 
chimera. The solid lines are single exponential fits. 
Error bars are the standard error of the mean 
(SEM) from =five independent experiments. (C) 
Double-mutant cvcle analvsis of inactivation. The 

Time, sec 
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channel and that the T1 domain tetramer 
forms the docking platform for the P subunit. 

Fig. 5. Composite mod- 
el of a voltage-depen- 
dent K+ channel. The a 
subunit is shown in red, 
and the p subunit is in 
blue. The model of the 
pore region is based on 
the KcsA K+ channel 
(30). The structures of 
the voltage-sensing re- 
gion and connectors 
are unknown (depicted 
schematically). An NHi 
terminal inactivation 
peptide is shown enter; 
ing a lateral opening to 
gain access to the pore. 
Proposed locations of 
amino acids 273 to 275 
on the TI-S1 linker are 
shown (black asterisks) 
with the location of 
VaP4' on the TI do- 
main surface (green 
asterisks). 

- - - -  

T I  domain 

The contact look -extending from -the F2- 
terminal face of the T1 domain are obvious 
structures for interfacing with intracellular 
proteins-in this case the p subunit. We sug- 
gest that the major role of the T1 domain is to 
form a docking site for proteins whose activ- 
ities are coupled to K+ channel function. 

The apparent paradox of a too narrow 
pore in the T1 domain has a simple explana- 
tion. Our data suggest the presence of lateral 
openings between the T1 domain and the 
integral membrane part of the a subunit (Fig. 
5). This explanation accounts for the interac- 
tion between the inactivation peptide and 
amino acids on the top (COOH-terminal face) 
of T1 and in the TI-S1 linker close to TI. 
Because the peptide must access the pore 
through lateral openings, K+ ions must also 
pass through the openings. Lateral openings in 
the cytoplasm, with negative charged amino 
acids, are also a structural feature of nicotinic 
acetylcholine receptor ion channels (21). 

A single inactivation gate binds to its recep- 
tor near the intracellular pore entryway in an 
exclusive fashion when inactivation occurs (22, 
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23). Our findings are entirely consistent with 
this conclusion. Although we expect there to be 
four openings above the T1 domain, there is 
presumably only one site near the pore entry- 
way where a single peptide can induce inacti- 
vation. We propose that the inactivation peptide 
is poorly structured and snakes its way into a 
lateral opening to reach the central pore and this 
is why mutations in the T1-S1 linker influence 
the process. In some cases, four peptides may 
even be bound above T1, poised and ready, 
before inactivation. 

The central question as to why K' chan-
nels contain an oxido-reductase enzyme sub- 
unit remains unanswered. In this report. we 
have shown how the p subunit attaches to a 
voltage-dependent K- channel through its 
interaction with the T1 domain. We previous- 
ly suggested that interactions between a and 
(3 subunits may allow cellular redox regula- 
tion of the channel or channel regulation of 
enzyme activity ( I ) .  The structure of the 

complex takes us one step closer to 
understanding how such energetic coupling 
might occur. 
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