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Heterozygous mutations encoding abnormal forms of the death receptor Fas 
dominantly interfere with Fas-induced lymphocyte apoptosis in  human auto- 
immune lymphoproliferative syndrome. This effect, rather than depending on 
ligand-induced receptor oligomerization, was found t o  stem from ligand- 
independent interaction of wild-type and mutant Fas receptors through a 
specific region in the extracellular domain. Preassociated Fas complexes were 
found in  living cells by means of fluorescence resonance energy transfer be- 
tween variants of green fluorescent protein. These results show that formation 
of preassociated receptor complexes is necessary for Fas signaling and dom- 
inant interference in  human disease. 

Fas (CD95 or APO-1) is a cell surface recep- 
tor that transduces apoptotic signals critical 
for immune homeostasis and tolerance (1-3). 
The Fas protein is a 317-amino acid type l 
transmembrane glycoprotein with three extra- 
cellular cysteine-rich domains (CRDs) that 
are characteristic of the tumor necrosis factor 
receptor (TNFR) superfamily. Both Fas and 
Fas ligand (FasL) are predicted to form trim- 
ers, with CRD2 and CRD3 forming the major 
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contact surfaces for FasL (4, 5) .  The Fas 
cytoplasmic portion contains a death do- 
main that rapidly recruits the adaptor mol- 
ecule FADD (Fas-associated death domain 
protein) and the caspase-8 proenzyme after 
binding of FasL or agonistic antibodies, 
leading to caspase activation and apoptosis 
(6-10). 

Patients with autoimmune lymphoprolif- 
erative syndrome (ALPS) type 1A have het- 
erozygous germ line mutations in the APT-1 
Fas gene. Their lymphocytes are resistant to 
Fas-induced apoptosis, and transfection of 
the mutant allele causes dominant interfer- 

with a ~ o ~ t o s i s  (I1-induced through 
16). This was thought to result from ligand- 
mediated crosslinking of wild-type and de- 
fective Fas chains into mixed trimer com-
plexes. However, a mutation that causes an 

were transfected into p80 Jurkat cells (22) by elec- 
troporation using a BTX Electro Cell Manipulator 600. 
After 9 to 24 hours, cells were stimulated with the 
indicated amount of TNF-rr for 12 to 16 hours. Cells 
were then stained for HA expression and propidium 
iodide uptake. The number of HA-positive cells was 
scored under constant time, and percent inhibition of 
apoptosis was calculated by normalizing to the per- 
centage of cell death induced in the HveAACD-HA- 
transfected samples. Results are representative of 
three experiments. 
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extracellular domain deletion of most of 
CRD2 (ALPS Pt 2, deletion of amino acids 
52 to 96) as a result of altered RNA splicing 
shows no binding to agonistic antibodies or 
FasL, but still dominantly interferes with Fas- 
induced apoptosis almost as efficiently as 
does a death domain mutant [ALPS Pt 6. 
Ala24' +Asp (A241D)l (Fig. i ~ )  (13, 17): 
Control experiments showed equal cell sur- 
face expression of the wild-type and mutant 
Fas molecules (18). Thus, dominant interfer- 
ence cannot be explained by the conventional 
model of signaling by FasL-induced oli-
gomerization of receptor monomers because, 
in this scheme, the Pt 2 mutant Fas molecule 
would not become part of a mixed receptor 
complex. We therefore tested for ligand-in- 
dependent interactions between Pt 2 Fas and 
wild-type Fas. Both full-length and Pt 2 Fas 
coprecipitated with a Fas 1-210:GFP chimera 
in which green fluorescent protein (GFP) re- 
places the death domain (Fig. 1C). This in- 
teraction was specific, because the TNFR 
family receptors TNFR2lp80 and HveA did 
not interact with Fas (1). 

We have found that TNFR superfamily 
members share a self-association domain in 
CRD1, termed the "pre-ligand assembly 
domain" (PLAD) (Fig. 1B) (19). To test 
whether Fas contains a functional PLAD, 
we constructed hemagglutinin (HA)-tagged 
NH,-terminal Fas truncations (20). Delet-
ing the first subdomain in CRDl (amino 
acids 1 to 42) (21) substantially reduced 
ligand binding but did not prevent binding 
of the Fas monoclonal antibody (mAb) 
APO-1. Deleting the entire CRDl (amino 
acids 1 to 66) abrogated binding of both 
FasL and Fas mAb (Fig. 1A). Both trunca- 
tions eliminated coprecipitation with a dif- 
ferentially tagged Fas molecule and abro- 
gated apoptosis signaling; this result indi- 
cates that the NH2-terminus of Fas, includ- 
ing CRD1, functions as a PLAD (Fig. 1, C 
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and D) (19, 22). Fas mutants from ALPS 
patients with truncated or mutated death 
domains are potent dominant-negative in-
hibitors of normal Fas function. How-
ever, if the PLAD was removed from Fas 
molecules lacking the death domain (Fas 
1-210) or harboring an ALPS death domain 
point mutation [ALPS Pt 26, Asp244+Val 
(D244V)], dominant interference was lost 
(Fig. ID). 

To further explore the requirement for 
ligand binding in receptor self-association, 
we tested the Fas point mutation Argp6+Ser 
(R86S) that removes a critical CRD2 contact 
residue for FasL (5) and prevents FasL bind-
ing (Fig. 1A). The overall receptor structure 
was preserved, as indicated by staining with 
APO-1 and DX2 Fas mAbs (Fig. 1A) (18), 
and self-association with wild-type Fas still 
occurred (Fig. 1C). Even though it could not 
bind FasL, this mutant dominantly interfered 
with FasL-induced apoptosis through wild-
type Fas (Fig. 1E). Apoptosis induced by Fas 
mAb in the same cells was unimpaired, 
which indicated that Fas was functionally 
expressed on the cell surface (Fig. 1E). Thus, 
receptor self-association is independent of 

ligand binding, yet critical for both normal 
function and dominant interference. 

To quantitate Fas receptor self-association 
in living cells, we developed flow cytometric 
and microscopic assays based on fluorescence 
resonance energy transfer (FRET) between 
spectral variants of GFP. [See protocol at Sci-
ence's STKE (www.stke.org/cgi/contentlfulV 
OC~sigtrans;2000/38/pll)].When in close 
proximity (<100A), cyan fluorescentprotein 
(CFP) and yellow fluorescent protein (YFP) 
will exhibit FRET (23). Flow cytometry us-
ing CFP excitation of cells expressing both 
CFP and YFP Fas fusion proteins triggered 
strong fluorescence emission at the YFP 
wavelength attributable to FRET (Fig. 2A) 
(24). FRET was detected between Fas fusion 
proteins with or without the death domain, 
but not between Fas and other TNFR family 
members, such as TNFRl/p60, HveA, or 
DR4 (Fig. 2) (1, 18). Microscopic measure-
ment of CFP dequenching after selectively 
photobleaching YFP yielded a FRET effi-
ciency of 11%. With the death domain on 
both molecules, FRET efficiency rose to 
23%, consistent with increased oligomeriza-
tion via the death domain (25). Pt 2 Fas gave 

a FRET efficiency comparable to that of Fas 
1-210, but there was reduced signal with Fas 
43-210 and no detectable FRET with Fas 
67-210 or the DR4 control (Fig. 2B). Hence, 
Fas molecules are in close proximity on the 
surface of living cells, and this proximity 
depends on the PLAD. 

To test whether native Fas receDtors nor-
mally self-associate, we performed chemical 
crosslinking studies on H9 T lymphoma cells 
expressing endogenous human Fas (Fig. 3). 
Crosslinking shifted the apparent molecular 
size of Fas in deglycosylatedcell lysates from 
45 to 140 kD under nonreducing conditions 
(Fig. 3A). Densitometry suggested that 60% 
of the Fas chains were crosslinked. Unlike 
FasL- or Fas mAb-treated cells, Fas com-
plexes from surface-crosslinkedcells showed 
only partial recruitment of FADD and no 
recruitment of caspase-8, with no cleavage 
of the downstream caspase substrate poly-
(ADP-ribose)polymerase (PARP). Interest-
ingly, crosslinking prevented the formation 
of active signaling complexes in response 
to subsequent treatment with agonistic 
mAb (Fig. 3B). 

Our findings redefine how death signals 
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are triggered through Fas and how muta- 
tions in ALPS dominantly interfere w i th  
normal Fas function. In a large number o f  
ALPS patients evaluated at the National 
Institutes o f  Health (13-15, 17), we found 
that the P L A D  was preserved in every ex- 
ample o f  a dominant-interfering mutation 
associated w i th  disease, including muta- 
tions that create premature termination 
polypeptides encoding only the first 57 and 
62 amino acids o f  the mature Fas protein. 
T o  cause dominant interference, mutant 
proteins must physically interact w i th  wild- 
type proteins in a functional complex (26). 
Previously, dominant-negative receptor 
mutations associated w i th  human diseases 
have been shown to interfere w i th  normal 
receptor signaling b y  sequestering ligand, 

CFP-YFP 

CFP YFP - - 
Fas 1-210 Fasl-210 

Fas 1-210 Pt 2 (652-96) 

Fas 1-210 Fas 45210 

Fas 1-210 Fas 67-210 

Fas 1-317 DR4 

Fas 1-317 Fas 1-317 

O . O n _ ~ " L O O  
"i N m 

FRET efficiency (E%) 

Fig. 2. (A) Dot plots showing relationships be- 
tween CFP, YFP, and FRET signals in the indi- 
cated cotransfectants. CFP and YFP fusion pro- 
teins were constructed, transfected into 293T 
cells, and analyzed on a FACSvantage cytome- 
ter (24). Numbers are the percentage of cells 
poskive for CFP or YFP wiih FRET ignal (top 
right quadrant). The bottom panel shows FRET 
from a construct in which CFP was covalently 
fused to  YFP through a nine-amino acid pep- 
tide linker (CFP-YFP) (30). (B) FRET efficiency 
(E%) for the indicated CFP and YFP pairs, as 
determined by CFP dequenching after photo- 
bleaching of YFP on individual cells (five read- 
ings of four- to  seven-cell regions) (24). The 
numbers represent the average E% and stan- 
dard error for each plasmid pair. 

blocking intracellular signaling, or prevent- 
ing transport o f  the wild-type chain to  the 
cell surface (27). For Fas, dominant inter- 
ference stems instead from PLAD-mediat- 
ed association between wild-type and mu- 
tant receptors before ligand binding. P L A D  
interactions are essential for ligand binding 
and signaling and have been observed in 
the regulation o f  apoptosis b y  soluble alter- 
natively spliced forms o f  Fas that a l l  in- 
clude this domain (28). PLAD-mediated 
dominant interference may also play a role 
in modulation o f  signaling b y  decoy recep- 
tors (2) and in the pathogenesis o f  diseases 
due to  heterozygous genetic abnormalities 
in other members o f  the TNFR superfamily. 
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Fig. 3. Preassociation of endogenous Fas recep- 
tor chains. H9 lymphoma cells (10') were treat- 
ed for 30 min with 10 mM of the thiol-cleav- 
able crosslinker 3,3'-dithiobis[sulfosuccinimidyl 
propionate] (DTSSP) and/or stimulated with 
the indicated reagents or were incubated in 
medium alone (No Tx). (A) Western blots of 
deglycosylated cell lysates run under reducing 
or nonreducing conditions were treated with 
and probed with Fas mAb. The arrow indicates 
the position of the major crosslinked species. 
Size markers (in kilodaltons) are at the right. (B) 
After treatment with the indicated reagents, 
cells were lysed, immunoprecipitated, and blot- 
ted for FADD and caspase-8 as described (75). 
The positions of the two isoforms of pro- 
caspase-8 (~54152) and caspase-8 cleavage 
products after proteolysis of the p l l  caspase 
subunit (~43141) are shown with arrows. PARP 
cleavage was analyzed on lysates from cells 
cultured at 37OC for an additional 4 hours 
after the indicated treatments. The upper 
band is the 115-kD full-length PARP; the 
lower band is the 85-kD signature fragment 
produced by caspase cleavage during apopto- 
sis. The results are representative of at least 
three independent experiments. 
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Definition of cellular responses to cytokines often involves cross-communica- 
tion through their respective receptors. Here, signaling by interferon-? (IFN-y) 
is shown to depend on the IFN-alp receptor components. Although these lFNs 
transmit signals through distinct receptor complexes, the IFN-alp receptor 
component, IFNARI, facilitates efficient assembly of IFN-y-activated tran- 
scription factors. This cross talk is contingent on a constitutive subthreshold 
IFN-alp signaling and the association between the two nonligand-binding 
receptor components, IFNARI and IFNGRZ, in the caveolar membrane domains. 
This aspect of signaling cross talk by lFNs may apply to other cytokines. 

The cytokines IFN-alp and IFN-y play cen- 
tral roles in the innate immune response 
against viral infections (1-4). IFN-y is also 
widely involved in the regulation of adaptive 
immune responses (5). These cytokines trans- 
mit signals to the cell interior through distinct 
receptor complexes, the IFN-alp receptor 
(IFNAR) and the IFN-y receptor (IFNGR), 
each composed of two type I1 membrane 
glycoproteins: IFNARl and IFNAR2, and 
IFNGRl and IFNGR2 (2-4, 6-8). Ligand-
induced stimulation of each IFN receptor 
complex results in the activation of the recep- 
tor-associated Janus protein tyrosine kinases 
(Jak PTKs), specifically, Jakl and Tyk2 
PTKs for IFNAR and Jakl and Jak2 PTKs for 
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IFNGR (6-10). After activation of these Jak 
PTKs, the signal transducers and activators of 
transcription 1 (Statl) and Stat2 are tyrosine- 
phosphorylated, leading to formation of the 
two transcriptional activators, IFN-y-activat- 
ed factor (GAF)iIFN-a-activated factor 
(AM) and IFN-stimulated gene factor 3 
(ISGF3)iStatl-p48 (9, 11). Although IFN-
a l p  and IFN-y elicit cellular antiviral activi- 
ties, it is unknown whether IFNAR and 
IFNGR share any functional aspects in the 
signaling processes. Receptors for these IFNs 
and other cytokines are expressed at low 
levels, ranging from 10' to lo3 molecules on 
the cell surface (2), but can efficiently trans- 
mit signals to the cell interior. This raises the 
possibility that these receptors are clustered, 
even before ligand stimulation, to a particular 
region of the cell membrane. 

Mouse embryonic fibroblasts (MEFs), iso- 
lated fiom either IFNAR1-deficient or 
IFNGR1-deficient mice (12, 13), were exam- 
ined for their antiviral response induced by 
IFN-y or IFN-a (14). In MEFs l a c h g  
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IFNARl (IFNAR1-null MEFs) ( l j ) ,  the IFN-
y-induced antiviral response was impaired; a 
concentration of EN-y that was 10 times high- 
er than that for wild-type (WT) MEFs was 
required to achieve 50% protection of the cells 
from encephalomyocarditis virus (EMCV) in- 
fection, and full IFN-y response was not 
achieved at even higher ligand concentrations 
(Fig. 1A). In contrast, the IFN-a-induced anti-
viral response was normal in MEFs deficient in 
IFN-y receptor (IFNGR1-null MEFs). The 
IFN-y-induced DNA-binding activity of Statl 
was six to seven times lower in IFNAR1-null 
MEFs than in WT MEFs (Fig. 1B) (12), al- 
though the kinetics of the Statl activation was 
the same (16). Similar results were obtained in 
splenocytes of these mutant mice (1 6), indicat- 
ing that the observed defect in Statl activation 
is not restricted to MEFs. In contrast, Statl 
activation by IFN-a was normal in IFNGRl- 
null MEFs (16), consistent with the antiviral 
assay result. Like IFN-alp stimulation, IFN-y 
stimulation activates ISGF3 in MEFs (17), 
which is critical for the IFN-y-induced antiviral 
response (1 7,18). In IFNARl -null MEFs, how- 
ever, IFN-y-induced formation of the ISGF3 
complex was not detected (Fig. 1B). 

To determine the role of IFNARl in 
IFN-y signaling, we expressed mutant forms 
of IFNARl (Fig. 1C) in the IFNAR1-null 
MEFs. Expression of WT IFNARl restored 
the IFN-y-induced activation of Statl and 
ISGF3 (Fig. lC, lower panel), as well as 
antiviral responses (Fig. ID). However, ex- 
pression of either a mutant IFNARl lacking 
the cytoplasmic region or a chimeric receptor 
composed of the IFNARl transmembrane 
and cytoplasmic region failed to restore the 
response to IFN-y (Fig. 1, C and D). 

These results raised the question of 
whether an intact IFNARl or an IFN-alp 
signaling event, mediated by IFNAR1, is 
required to produce a complete IFN-y 
response. Because low levels of IFN-alp 
mRNA expression were detected by reverse 
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