
pathway and independent of follicularly or-
ganized lymphoid tissue perhaps offers a 
glimpse at the primitive, specific antibody- 
dependent immune system 
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Impaired Cued and Contextual 
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Neuronal PAS domain protein 2 (NPASZ) is a basic helix-loop-helix (bHLH) PAS 
domain transcription factor expressed in multiple regions of the vertebrate 
brain. Targeted insertion of a P-galactosidase reporter gene (LacZ) resulted in 
the production of an NPASZ-lacZ fusion protein and an altered form of NPASZ 
lacking the bHLH domain. The neuroanatomical expression pattern of NPASZ- 
lacZ was temporally and spatially coincident wi th  formation of the mature 
frontal association/limbic forebrain pathway. NPASZ-deficient mice were sub- 
iected t o  a series of behavioral tests and were found t o  exhibit deficits in the 
long-term memory arm of the cued and contextual fear task. Thus, NPASZ may 
serve a dedicated regulatory role in the acquisition of specific types of memory. 

Because pharmacological inhibitors of gene 
expression impede learning in a variety of 
experimental paradigms ( I ) ,  it is anticipated 
that gene-specific transcription factors may 

deficient in long-term memory (2). The cal- 
cium- and CAMP-mediated signal transduc- 
tion pathways, as well as the transcription 
factors that alter gene expression as a termi- 
nal result of intracellular signaling, are ex- 
pressed in a wide spectrum of invertebrate 
and vertebrate cell types (3). It is logical to .-
assume that ubiquitous signaling 
facilitate stimulus-induced changes in neuro- 
nal gene expression. Less obvious is how a 
selective regional pattern of regulatory re-
sponse may be orchestrated. 

The onset of neuronal PAS domain pro- 
tein 2 (NPASZ) gene expression occurs with- 
in the first week of postnatal development, is 
exclusively restricted to neurons, and is dis- 
tributed within a stereotypic pattern of fore- 

essential medium and incubated for 5 hours (37"C, 
5% CO,), Cells were washed off, and plates were 
incubated successively with 1:iooo aff~nity-purified 
goat anti-mouse ~ g i(Sigma) and 1:1000 alkaline 
phosphatase-conjugated donkey anti-goat IgG (Jack- 
son lmmunoResearch, before develooment of alka-
line phosphatase color reactions. 
M. Matsumoto et a/., Nature 382, 462 (1996). 
The aly/aly mice do contain cryptopatches, which are 
intestinal lyrnphopoietic sites for T but not B lym- 
phocytes [H. Saito et a/., Science 280, 275 (1998)l. 
Enzyme-linked irnmunosorbent assay (ELISA) plates 
were coated with 1 bg/ml of isotype-specific anti-lgA 
(Southern Biotechnologies) or anti-lgAa (PharMingen) 
in 0.1 M NaHCO, (pH 9.6) overnight at 4°C and 
blocked with 3% (wlv) BSA at RT. Serum, intestinal 

Orstarting at lo6 1051ml) in 2% minimalplay a regulatory role in learning and mem- 
ory. For example, mice deficient in cyclic 
adenosine 3',5'-monophosphate (CAMP) re- - A 

sponse element-binding protein exhibit nor- 
ma1 learning and short-term memory but are 
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brain nuclei (4). This expression pattern is 
temporally matched with the ontogeny of 
learning and memory (5) and spatially 
matched with the frontal association/limbic 
forebrain pathway (6). A targeted disruption 
of the NPAS2 allele was generated in 129361 
SvEvTac-derived embryonic stem cells (Fig. 
1, A and B) such that the coding exon for the 
basic helix-loop-helix (bHLH) domain was 
replaced with a modified lacZ gene from 
Escherichia coli (7). As shown in Fig. lC, 
the NPAS2-lacZ allele produces two distinct 
mRNA products. The first and anticipated 
mRNA splices the first coding exon of 
NPAS2 to the second coding exon fused to 
the lacZ gene. The second transcript skips the 
second coding exon (containing the inserted 
lacZ gene and the downstream polII-neo cas- 
sette) and instead splices the first coding exon 
of NPAS2 onto the third coding exon. West- 
ern blot analysis revealed that the variant 
NPAS2 transcript produced in NPAS2-lacZ 
mice encoded an altered form of WAS2 
lacking the bHLH domain (AbHLH-NPAS2) 
(Fig. 2, A and B). A transient transfection 
assay was used to assess the functional activ- 
ities of native NPAS2 and NPAS2-AbHLH 
(8) as tested with and without the obligate 
heterodimeric partner of NPAS2, brain and 
muscle ARNT (aryl hydrocarbon nuclear 
translocator)-like (BMAL) protein (9, 10). 
Substantial, BMAL-dependent transcription- 
al activation was only observed in cells trans- 
fected with the expression vector encoding 
wild-type NPAS2 (Fig. 2C). By contrast, the 
expression vector encoding the NPAS2- 
AbHLH variant exhibited minimal induction 
of the NPASZdependent reporter gene in 
comparison to the BMAL expression vector 
alone. 

We next defined the neuroanatomical ex- 
pression pattern of P-galactosidase (P-Gal) 

activity in NPAS2-lacZ mice (11). NPAS2- mus, but not in the cerebellum or brainstem 
lacZ expression was observed in the cortex, of NPAS2-lacZ homozygous (-I-) mice 
hippocampus, striatum, amygdala, and thala- (Fig. 3, A through F). Particularly intense 

Fig. 2. (A) Schematic dia- 
grams showing splicing 
patterns observed for 
NPASZ mRNA. NPASZ 
mRNA in wild-type (+I+) 
mice splices the first cod- 
ing exon onto the second 
(bHLH-encoding) exon. An 
altered form of NPASZ 
mRNA (NPASZ-AbHLH) is 
produced in NPASZ-LacZ 
(-I-) mice where splicing 
of the first coding exon of 
the NPASZ gene onto the 
third coding exon occurs. If 
translation of the spliced 
form of NPASZ in NPASZ- 
LacZ mice occurs at the 
second available methio- 
nine (M,), a variant form of 
NPASZ is produced, con- 
taining six aberrant resi- 
dues encoded by the first 
coding exon, no part of the 
bHLH domain, yet all re- 
maining sequences of the 
intact NPASZ protein be- 
ginning with coding exon 3 
(37). (B) Western blot as- 
says of native NPASZ and a 
bHLH-deleted form of 
NPASZ (NPASZ-AbHLH). 
An immunoreactive spe- 
cies specific for wild-type 
NPASZ was found in (i) 

8 (i) (ii) (iii) (iv) 

293 cells transfected with 
the expression vector encoding native NPASZ and in (iii) brain protein lysates from (+I+) mice. An 
immunoreactive species -10 kD smaller than native NPASZ was found in (ii) 293 cells transfected with 
the expression vector encoding NPASZ-AbHLH as well as in (iv) brain protein samples derived from 
NPASZ-lacZ (-I-) mice. (C) Transient transfection assays of native and AbHLH forms of NPASZ. 
Cultured 293 cells were transfected with an NPASZ-responsive reporter gene along with half-log 
increasing increments (1, 3, and 10 ng) of expression vectors encoding BM& native NPASZ (WT NPASZ), 
NPASZ-AbHLH (AbHLH), or combinations thereof. Significant, dose-dependent increases in reporter gene 
activity were only observed in cells cotransfected with both the BMAL and native NPASZ expression vectors. 

Fig. 1. Generation of NPASZ-lacZ mice. (A) A 
Schematic diagram of genomic mouse DNA in wr z* 
the region surrounding the bHLH-encoding Wild-type Allele (N): 
exon of the endogenous NPASZ gene (N) or the - 

hilly ~mhc 1144 \ 13 l , r , h ?  
d~srupted NPASZ-Lac2 allele (Z). (0)  Southern C 14 kh 
blot analysis indicating the I l -kb  Xba I wild- 
type NPASZ allele (N) and the 14-kb Xba I ba l Xbal L C l l  kb 

fragment specific to the targeted allele (Z) in ~ p ~ s - 1 ~ ~ ~  (z): I tilt/ 1 nee I 1 3. Fxonb 

either wild-type (WT) or homozygous NPASZ- - - 
LacZ (22) mice. (C) Northern blot analysis with lac/ I'mk 1'44 Z\ H I ' n b k  

probes derived from the (i) bHLH-encoding exon, (ii) lacZ gene, and (iii) PAS 
domain. The bHLH probe detected intact NPASZ mRNA in polyadenylated 

m n 
(I) bHLH Probe (11) lac2 Probe (il i)  PAS A/B Probe 

[poly(A)'] RNA prepared from wild-type mouse brain (WT) but not in poly(A)' m n 
prepared from homozygous NPASZ-lac2 mouse brain (22). The lacZ probe 
detected an NPASZ-lacZ fusion mRNA in RNA prepared from hornozygous 

w 
NPASZ-IacZ mice but not in RNA from wild-type mice. The PAS 1\18 probe NPAS2 6 A 

detected similarly sized mRNA from both wild-type and homozygous NPASZ- 
lacZ mice. The filters were reprobed for glyceraldehyde phosphate dehydroge- 
nase (CAPDH) for comparison. 

m n m n 

i i 
WT P 

GAPDH --) 
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P-Gal staining was observed in the bar- 
relfields (Fig. 3, G and H), somatosensory 
cortical structures implicated in the process- 
ing of complex sensory information gathered 
from vibrissae (12). NPAS2-lacZ expression 
in the barrelfields was coincident with cyto- 
chrome oxidase staining (13), a histological 
marker for barrelfield structures (14). 
NPAS2-lacZ expression was highly enriched 

in the brain yet absent from both the supra- 
chiasmatic nucleus (SCN) and pineal gland 
(15). Morphological studies revealed no 
changes in NPAS2-lacZ (-I-) animals rela- 
tive to NPAS2-lacZ heterozygous (+I-) or 
wild-type (+I+) animals as assessed by lacZ 
staining or by gross anatomical examination. 

The NPAS2-lacZ (-I-) mice were fer- 
tile, active, and morphologically indistin- 

Fig. 3. P-Gal expression pattern in brain tissue of NPASZ-lacZ mice. (A through F) Light microscopic 
photographs of coronal vibratome brain sections (100 km) of I-month-old male NPAS2-1acZ (-I-) 
mice, stained to  reveal P-Gal activity. Sections (A) through (F) correlate to  plate numbers 18, 31, 
42, 45, 50, and 58, respectively, of (32). [Abbreviations: Acb, accumbens nucleus; AStr, amygdal- 
ostriatal transition area; Au, auditory cortex; BLA, basolateral amygdaloid nucleus; BST, bed nucleus 
of stria terminalis; CAI, field of hippocampus CAI; Cg, cingulate cortex; CM, centromedian thalamic 
nucleus; CPu, caudate-putamen (striatum); DCL, deep cortical layers; DEn, dorsal endopiriform, 
nucleus; FC, fasciola cinereum; GrDG, granular layer, dentate gyrus; La, lateral amygdaloid nucleus; 
LEnt, lateral entorhinal cortex; M, primary and secondary motor cortex; MG, medial geniculate; Pir, 
piriform cortex; Po, posterior thalamic nucleus; RS, retrosplenial cortex; S, subiculum; S1, primary 
somatosensory cortex; Tu, olfactory tubercle; V, visual cortex; VDB, ventral limb diagonal band; VM, 
ventromedian thalamic nucleus; VPL, ventroposteriolateral thalamic nucleus; and VPM, ventropos- 
teriomedial thalamic nucleus.] Light microscopic photographs of tangential vibratome brain sec- 
tions (100 km) of I-month-old male NPASZ-lacZ (-I-) mice, stained to  reveal (G) P-Gal activity 
or (H) cytochrome oxidase activity. Scale bars indicate 1 mm. 

guishable from NPAS2-lacZ (+I-) or (+I+) 
littermates. Male mice generated from F, or 
F, mating pairs were tested in a neurobehav- 
ioral test battery (16). No statistically signif- 
icant differences were observed between 
NPAS2-lacZ (-I-) and (+I+) littermates in 
any behavioral assay except for the cued and 
contextual fear (CCF) task (Fig. 4) (1 7). In 
this assay, mice were trained repeatedly with 
a mild electrical foot shock that occurred 
immediately after an auditory cue (18) and 
were subsequently scored for fear behavior 
(freezing). For contextual memory, mice 
were tested in the same environment in which 
they were trained. For cued memory, freezing 
was assessed in a novel environment, .first in 
the absence of and then in the presence of the 
training auditory cue. 

The NPAS2-lacZ (-I-) mice froze less 
frequently than the (+I+) littermates (35% 
versus 50%) when assayed in the 24-hour 
contextual arm of the CCF assay (Fig. 4A). 
There were no differences in freezing behav- 
ior between NPAS2-lacZ (-I-) and (+I+) 
mice in the 0.5-hour contextual assay, indi- 
cating the NPAS2-lacZ (-I-) mice were not 
deficient in short-term memory (Fig.4B). 
When assayed in the 24-hour cued arm, 
NPAS2-lacZ (-I-) mice again exhibited a 
distinct, statistically significant deficit rela- 
tive to (+I+) littermates (40% versus 50%) 
(Fig. 4C). Before the auditory cue, the freez- 
ing behavior of NPAS2-lacZ (-I-) mice was 
similar to that of (+I+) littermates. 

Having observed intense expression of 
NPAS2 in the barrelfields, we performed an 
adaptation of the CCF assay to assess the 
contribution of tactile information to contex- 
tual memory. In the adapted CCF assay, mice 
were tested 24 hours after training in an 
environment where smell and appearance 
were novel yet the texture of the cage floor- 
ing was identical to that used in training. 
Tactile information alone was sufficient to 
reveal differences in freezing behavior be- 
tween NPAS2-lacZ (-/-) and (+/+) mice 
(12% versus 25%) (Fig. 4D). Although the 
percentage of freezing time was lower than 
that observed for either of the classical arms 
of the test, significant differences were ob- 
served between NPAS2-lacZ (-I-) mice and 
their (+/+) littermates. Finally, the cued 
stimulus, when administered in this "tactile 
only" contextual environment, facilitated re- 
call for both NPAS2-lacZ (-/-) and (+/+) 
mice (45% versus 62%). 

The results of these behavioral studies 
indicate that NPAS2-lacZ (-I-) mice are 
deficient in complex emotional long-term 
memory (CCF task) but not in non-emotional 
memory (Morris water maze), anxiety (open 
field, lighddark conflict, and elevated plus 
maze), or simple aversive conditioning tasks 
(passive avoidance and step-down avoid- 
ance). Likewise, the NPAS2-lacZ (-/-) 
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mice showed no obvious deficits in their 
ability to perceive and process primary sen- 
sory stimuli relating to touch, reflex, balance, 
vision, or hearing. With respect to sensory 
information perception, the NPAS2-lacZ 
(- I - )  mice and their (+I+) littermates exhib- 
ited similar performances in the shock threshold 
and hot-plate analgesia tests (supplementary 
data are available at www.sciencemag.org/ 
feature/data/l049880.shl).Thus, WAS2 ap-
pears to be required for the processing of com- 
plex sensory information. 

Localized regions of the frontal cortex/ -
limbic cortex have been implicated in emo- 
tional learning and memory (19). The ob- 
served deficits in cued as well as contextual 
memory suggest that the abnormalities in 
NPAS2-lacZ (-I-) mice include amygdalar- 
processed information (20, 21). The CCF as- 
say has been described as assessing hip- 
pocampal-independent (cued CCF) versus 
hippocampal-dependent (contextual CCF) 
learning. Several reports describe hippocam- 
pal-lesioned rodents that are primarily defec- 
tive in contextual but not cued fear (21, 22). 
In addition, entorhinal-lesioned animals that 
are defective in contextual learning have been 
studied (23). We have not identified what 
anatomical site(s) are responsible for the fail- 
ure of NPAS2-lacZ (-/-) mice to learn in 
the CCF task. Furthermore, genetic ablation 
experiments as described herein may differ 
substantially from lesion studies because re- 
lated gene product(s) may compensate for a 
specific genetic deficiency such that func- 
tional deficits may occur in only a subset of 
anatomical sites. However, localization of a 
deficit within the frontal association/limbic 
forebrain pathway represents an appealing 
hypothesis for the NPAS2-lacZ ( - I - )  mice 
because the thalamo-cortico-amygdalo path- 

Fig. 4. CCF behavior in 70 

way is essential for complex emotional mem- 
ory (24). 

Using quantitative trait loci analysis, an- 
other study identified, through the examina- 
tion of the progeny resulting from the cross of 
two inbred strains, candidate regions encod- 
ing factors that influence CCF (25). The re- 
gion with the strongest influence on CCF 
learning was found in close proximity to 
NPAS2. It is possible that a 129S61SvEvTac- 
derived gene closely linked to the NPAS2 
locus is instead responsible for the observed 
phenotype. However, previous studies have 
shown that 129S61SvEvTac mice respond to 
this test with an increased level of context- 
cued freezing relative to C57BL/6J, precisely 
the opposite trend from what we have ob- 
served for NPAS2-lacZ ( - i - )  mice (26). 

The closest relative of NPAS2 is CLOCK, 
a master regulator of circadian rhythm (27). 
Both NPAS2 and CLOCK function optimally 
by using the same heterodimeric partner, 
BMAL, whose temporal expression pattern 
confers circadian rhythmicity to CLOCK-me- 
diated gene expression in mice (9, 28). There- 
fore, NPAS2-mediated gene expression may 
interface with CLOCK regulatory circuits as 
supported by observations that conditioned 
fear affects the modulation of circadian 
rhythms (29). 

NPAS2-lacZ (-I-) mice may have im- 
paired brain function. We hypothesize that 
NPAS2 gene expression may be activated 
subsequent to the wiring of neuronal circuits 
required for learned behavior (30). Once ac- 
tivated, NPAS2 may serve to regulate the 
neuronal expression of a battery of genes 
required for the consolidation of long-term 
memory and/or to maintain a functional rela- 
tion between multiple components of the 
frontal associationilimbic forebrain pathway. 

If NPAS2 indeed proves to function as part of 
a circadian oscillator that is widespread 
throughout the forebrain, it is possible that 
the behavioral deficits observed in the present 
study are reflective of the importance of 
rhythmic gene expression on the execution of 
complex cognitive tasks. 
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