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Understanding the Distribution 

of Near-Earth Asteroids 


William F. Bottke Jr.,' Robert Jed i~ke ,~  Alessandro ~orb ide l l i ,~  
Jean-Marc ~ e t i t , ~  <;[adman3~ r e t t  

We have deduced the orbital and size distributions of the near-Earth asteroids 
(NEAs) by (i) numerically integrating NEAs from their source regions t o  their 
observed orbits, (ii) estimating the observational biases and size distribution 
associated with asteroids on those orbits, and (iii) creating a model population 
that can be f i t  t o  the known NEAs. We predict that there are -900 NEAs with 
absolute magnitude less than 18 (that is, kilometer-sized), of which 29,65, and 
6% reside on Amor, Apollo, and Aten orbits, respectively. These results suggest 
that roughly 40% of the kilometer-sized NEAs have been found. The remainder, 
on highly eccentric and inclined orbits, are more difficult t o  detect. 

Most NEAs [definition in ( I ) ] are believed to be 
fragments of main belt asteroids that, alter ejec- 
tion in a collision event involving a larger as- 
teroid millions of years ago, wandered through 
space until reaching an Earth-approaching orbit 
(2). Evidence from the lunar and terrestrial 
crater record indicates that this population has 
bombarded Earth over the age of the solar 
system, and related geologic evidence indicates 
that the collision of a multi-kilometer asteroid 
with Earth can wreak regional-to-global devas- 
tation on our biosphere (3). 

Despite widespread recognition of the 
NEA impact hazard (4) ,  the distributions of 
NEA orbits and sizes remain uncertain. As of 
April 2000, -950 NEAs have been detected 
that have absolute magnitude H between 10 
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and 29 (5), roughly corresponding to asteroid 
diameters D between 40 and 0.01 km (6 ) .It is 
likely that only NEAs brighter than H - 14 
(D> 7 krn) have been completely discovered 
(7, 8); these 16 objects are too few to help 
determine the orbital distribution of the 
smaller NEAs. An added complication is that 
the observed distribution of H > 14 NEAs is 
heavily skewed because (i) they were discov- 
ered piecemeal by different asteroid survey 
programs following a variety of detection 
strategies; and (ii) each survey is flux-limit- 
ed, so that the volume of space it investigates 
varies strongly with H (9, 10). Even worse, 
our understanding of the orbital paths taken 
by bodies to replenish the NEA population is 
incomplete, making it difficult to use specific 
NEAs as tracers of large-scale dynamical 
processes. Interpreting the orbital distribution 
of the NEA population, therefore, requires a 
knowledge of the detection biases involved 
and a characterization of the statistical evo-
lution of NEAs from their sources. 

TO attack these problems, we constructed a 
steady-state model of the orbital and size dis- 
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tributions of the NEAs (11). NEA orbits were 
generated by tracking the dynamical evolution 
of test bodies coming out of three so-called 
intermediate sources (ISs): regions that are con- 
stantly fed material escaping the main belt. The 
relative contributions of the ISs are expressed 
through weighting coefficients. The NEA size 
distribution, assumed to be orbit-independent, 
was constructed so that its shape could be ma- 
nipulated using a single parameter. Combining 
these components with the observational biases 
associated with the Spacewatch NEA survey, 
we obtained a model distribution (with three 
adjustable parameters) that could be fit to the 
orbits and sizes of the NEAs discovered or 
accidentally rediscovered by Spacewatch. The 
best-fit parameters extracted from thls tech- 
nique were then used to calculate the debiased 
NEA population. 

The physical and orbital properties of 
NEAs suggest that many originated in the 
main belt (2). Asteroid fragments, liberated 
during collisions in the main belt, are directly 
injected (12) or slowly moved via Yarkovsky 
thermal drag (13) into both mean-motion res- 
onances with the planets and so-called secu- 
lar resonances, where orbital frequencies are 
commensurate with the solar system's natural 
frequencies (14). These mechanisms create 
three important ISs for the NEAs: (i) aster- 
oids in the 3 : 1 mean-motion resonance with 
Jupiter; (ii) asteroids in the v, secular reso- 
nance; and (iii) asteroids on Mars-crossing 
orbits adjacent to the main belt, which have 
not yet entered the NEA region. The eccen- 
tricities (and inclinations) of the IS asteroids 
are modified by resonant perturbations and/or 
planetary encounters until they reach the 
NEA region (15-1 7). Other potential IS re- 
gions (for example, asteroids in the 5 :2  res- 
onance with Jupiter) provide relatively few 
NEAs (18). 

To understand the orbital paths followed 
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by NEAs from our IS regions, we start test 
bodies in each IS and track them as they cross 
a network of semimajor axis, eccentricity, 
inclination (a, e, i )  cells placed in the NEA 
region. Each (a, e, i) cell is 0.06 astronomical 
units (AU) X 0.02 X 5' in volume. The test 
bodies were followed with the use of the 
mixed-variable symplectic N-body code 
swift-rmvs3 (19). Gravitational perturbations 
from the planets Venus through Neptune 
were included in our integrations. Test bodies 
entering the NEA region were followed until 
they collided with the sun or a planet or were 
thrown beyond 10 AU, usually by a close 
encounter with Jupiter. We call these end 
states the sinks. Few objects (<I%) entering 
the NEA region were found to live longer 
than 100 million years (My), the nominal 
length of our integrations. Those that did 
were tracked until they were removed by a 
sink. Rare end states, such as collisional or 
tidal disruption events, were not included 
(20). 

To determine the steady-state orbital dis- 
tribution of NEAs coming from each IS, we 
calculated the cumulative time that particles 
spent in each cell and normalized those val- 
ues by the total time spent in all cells. The 
resultant residence time probability distribu- 
tion R,,(a, e, i) shows where asteroids from 
each IS statistically spend their time in the 
NEA region (21). To prevent under- or over- 
estimates in R,,, the initial orbits of the test 
bodies were placed outside the NEA region. 

R,,,(a, e, i) was calculated by tracking 
2354 test bodies (e < 0.35; i < 15') started 
within the boundaries of the 3 : 1 mean-mo- 
tion resonance with Jupiter, located at -2.5 
AU (1 6,21) (Fig. 1). Strong resonant e pump- 
ing allowed most bodies to reach NEA orbits 
in -1 My. Tests indicated that starting con- 
ditions have little influence on test body out- 
comes. The average time spent by a test body 
in the NEA region before entering a sink was 
2.2 My. Only 38% of the steady-state NEA 
population coming from the 3 : 1 resonance 
had a < 2 AU: the region where most known 
NEAs reside. 

For R,,(a, e, i), we followed 3519 test 
bodies started in the strong portion of the v, 
secular resonance (22), where periodic oscil- 
lations in e caused by the resonance can move 
them onto NEA orbits in -1 My (16, 21) 
(Fig. 1). The average time spent by these 
objects in the NEA region was 6.5 My. Sev- 
enty percent of the steady-state population 
coming from the v, resonance attained a < 2 
AU, nearly twice the fraction of the 3 : l  
NEAs. 

Our third IS is the component of the Mars- 
crossing asteroid population adjacent to the 
main belt. Bodies in this region, defined as 
intermediate source Mars-crossers (IMCs), 
have orbital parameters q > 1.3 AU, 2.06 AU 
5 a 5 2.48 AU, or 2.52 AU 5 a < 2.8 AU, 

i below the location of the v, resonance [i - 
15' or less (21)] and a combination of (a, e, i) 
values such that they cross the orbit of Mars 
during a secular oscillation cycle of their 
eccentricity (1 7). To offset leakage into the 
NEA region, these IMC objects are resup- 
plied predominantly by numerous Mars- and 
three-body (such as Jupiter-Saturn-asteroid) 
mean-motion resonances (1 7) and by materi- 
al in the vicinity of the v, resonance (23). Our 
numerical simulations suggest that the IMCs 
are a primary source of NEAs; other popula- 
tions on Mars-crossing orbits are not as ef- 
fective, with the exception of those bodies 
that are members of the other two ISs de- 
scribed in this paper. 

The IMC population changes over time as 
secular perturbations modify Mars's eccentric- 
ity. To ensure that past, present, and future IMC 
asteroids were accounted for, we integrated 
2977 known asteroids with perihelia 1.3 AU < 
q < 1.8 AU, 2.00 AU < a < 2.8 AU, and i < 
15" (5). Asteroids started near the 3 : 1 reso- 
nance or well inside the v, resonance were 
removed from our outcome statistics (21). We 
found that 755 of these bodies entered the NEA 
region over the integration time. These bodies 
were tracked until they entered one of the sinks, 
and their orbital paths were used to generate 
RIMC(a, e, i). To make sure that RIMC(a, e, i)  
was not dependent on initial conditions, we 
independently integrated a smaller set of ob- 
jects with 1.3 AU < q < 1.78 AU. Although 
fewer objects (542) entered the NEA region, no 
significant differences were seen in the shape of 
Rmc(a, e, i). For this reason, our final version 
of RIMc(a, e, i )  includes data from both sets. A 
complication in using real IMC asteroids to 
map orbital paths in the NEA region is that 
these objects are biased by observational selec- 
tion. To compensate for this effect, we weight- 
ed the orbital paths of all IMCs with a numer- 
ical factor corresponding to the observational 
biases associated with their starting orbit (23). 

The results for Rmc(a, e, i) (Fig. 1) sug- 
gest that the mechanisms pushing IMCs onto 
Earth-crossing orbits are weak, so that many 
objects evolve along the q - 1 AU line by 
Earth encounters (24). The average time 
spent by an IMC object in the NEA region 
before entering a sink was 3.85 My. In this 
case, 53% of the steady-state NEA popula- 
tion from the IMC region had a < 2 AU. 

Each RIs(a, e, i )  described above produces 
a characteristic orbital distribution that is dif- 
ferent from the others. This property allows 
us to model the steady-state orbital distribu- 
tion of the NEAs [R,,,(a, e, i)] as a linear 
combination of R,,(a, e, i) multiplied by un- 
known weighting factors (a,,) 

R~~~ = ( ~ 3 : 1 ~ 3 : l  + a v 8 v 6  + a I M ~ R I M ~  (1) 

The sum of all a,, values is 1.0, with 0.0 5 
a,, 5 1.0. 

Now that we have a function describing 

the NEA orbital distribution, we can examine 
the NEA absolute magnitude distribution 
NNEA(H). We assume that each IS has the 
same size distribution. We concentrate on the 
13 < H < 22 range (26). The shape of 
N,,,(H) was determined by testing several 
functional forms with free parameters. Some 
of our trial assumptions were based on pre- 
vious work (10,27,28). Our most successful 
characterization of the differential distribu- 
tion N,,,(H) for 13 < H < 22 was 

where y is a free parameter and C is a con- 
stant set by the total number of NEAs with 13 
< H < 15. 

Our model of the debiased orbital and size 

Fig. 1. A representation of the probability distri- 
butions of residence time [R,,(a, e, i)] for NEAs 
evolving out of our three ISs: (A) 3: l  mean- 
motion resonance with Jupiter, (B) the IMC re- 
gion, and (C) v, secular resonance. The sum of the 
(a, e, i )  bins in the NEA target region (0.5 AU < 
a < 2.8 AU; e < 0.8, i < 35O) has been normalized 
to 1.0. To display as much of the (a, e, i )  distri- 
bution as possible in two dimensions, we summed 
the i bins before plottilig R,,(a,e), whereas the e 
bins were summed before plotting R,,(a,i). The 
color scale depicts the expected density of NEAs 
in a scenario of steady-state replenishment from 
the IS regions. Red colors indicate where NEAs are 
statistically most likely to spend their time. Bins 
whose centers have perihelia q > 1.3 AU are not 
used and are colored black The white curved lines 
represent the values needed for an Earth-crossing 
orbit. The gray curve in the upper right indicates 
where objects cross the orbit of Jupiter. 
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Fig. 2. A comparison 
between the 138 Space- 
watch NEAs (shaded 
histogram) and n(a, e, i, 
H) (dark solid line), our 
best fit of the observed 
NEA probability distri- 
bution assuming a,:,, 
or,, a,, = 0.36, 0.29, 
0.35, respectively, and 
y = 0.35. The parame- 
ters are linked to the 
NEA target region (0.5 
AU < a  <2.8AU;e < 
0.8, i < 35'; H < 22). 
Our four-dimensional 
(a, e, i, H) distribution 
has been collapsed 
into one dimension 
for this comparison. 
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distribution of the NEAs, M(a, e, i, H), is 

M a ,  e, i, H)  = RmA(a, e, i) x NNEA (H) 

(3) 
If the free parameters a,, and y reflect actual 
NEA values, we can use our model to de- 
scribe the orbital and size distributions of all 
NEAs with H < 22 (that is, larger than - 170 
m in diameter). 

teroids, Spacewatch calculates the angular 
rate of motion for each detected body and 
uses this value as a discriminant. At oppo- 
sition, objects with ecliptic latitude rates 
between 20.3 degrees per day and ecliptic 
longitude rates between -0.2 to -0.3 de- 
grees per day are usually main belt or IMC 
asteroids (10). Asteroids with rates of mo- 
tion outside this zone are flagged as poten- 

To determine a,, and y, we need to com- tial NEAs and are followed over several 
pare Mwith the known NEAs. This cannot be observing nights until an orbit solution is 
done until we compensate for NEA discovery obtained. If that solution yields q < 1.3 
biases. Because each asteroid survey finds AU, Spacewatch reports an NEA discovery. 
objects based on its search strategy, the lim- This method, although useful, eliminates 
iting magnitude of its detector, and its system some NEAs; perhaps a third of all of Space- 
characteristics, each survey has unique dis- 
covery biases. For this reason, we focus here 
on debiasing results from the Spacewatch 
NEA search program, whose observing meth- 
odology and apparatus are well documented 
(9, 10). 

We used an earlier calculation of the 
bias B(a, e, i, H )  (10) for the Spacewatch 
detector system. The bias is a correction 
factor (n = BN) between the observed 
number (n) and actual number (N) of aster- 
oids in an (a, e, i, H )  bin per square degree 
at opposition at the vernal equinox. It can 

watch's NEA detections have rates of mo- 
tion that mimic typical main belt asteroids. 
Most excluded NEAs have a > 2 AU. The 
bias calculation we use incorporates a filter 
based on Spacewatch's selection of NEAs 
in the determination of the correction factor 
B. We call this more specific bias B,,, 
(30). 

Using B,,, our predicted distribution for 
the observed Spacewatch NEAs is 

n(a, e, i, H)  = BNEA(a, e, i,H) X M(a, e, i,H) 

= BNEA(a, e, i, H)RNEA(a, e, ~)NNEA(H), a, 

be thought of as an asteroid detection prob- (4) 

ability. Here, B has been calculated for the To simultaneously test in four dimen- 
range 0.5 AU < a < 2.8 AU, e < 0.8, i < sions how well this distribution matches 
35O, and H < 22, which we define as the real data, we compared n with 138 NEAs 
NEA target region. High B values corre- discovered and accidentally rediscovered 
spond to easily detected asteroids, whereas by Spacewatch (31), using a maximum- 
low B values correspond to difficult-to- likelihood technique (32). We computed 
detect asteroids (29). the best-fit parameters a,, and y by maxi- 

Only a small proportion of Space- mizing the likelihood value. Our best fit 
watch's detections are NEAs. To separate yielded a,:, = 0.36?:::2 and a,,, = 
NEAs from more numerous background as- 0.29:::::, with a,,, constrained by the re- 

lation a,:, + alMC + a,,, = 1.0. At the 
best-fit values, a,, = 0.35. The best-fit y = 
0.35 2 0.02. The statistical errors of our fit 
were determined with a Monte Carlo meth- 
od (33). These values only apply to the 
specified NEA target region. The parameter 
C in Eq. 2 is then fixed by imposing that 
S:2NNEA(H)dH = 66 (34). With the best- 
fit value of y reported above, we obtain 
C = 13.26. 

We can graphically compare our 138 
Spacewatch NEAs to our best-fit case by 
collapsing our results into four one-dimen- 
sional plots over a, e, i, H (Fig. 2). We find 
that our three IS regions account for the vast 
majority of known NEAs, so that our esti- 
mate for M(a, e, i, H )  should be accurate 
enough for general use by observers and the- 
oreticians. The quality of the fit also implies 
that additional sources of NEAs, such as ex- 
tinct comets (39, cannot produce a signifi- 
cant fraction of H < 22 NEAs unless they 
also produce orbital signatures similar to 
those of R,, regions already considered. 

Using the best-fit parameters for the NEA 
target region, we derive M(a, e, i, H), the 
debiased orbital and size distributions for the 
entire NEA region (e < 1.0, i < 90°, H < 
22). The contributions of the IS regions (3 : 1, 
IMC, and v,) to M are 40, 27, and 33%, 
respectively. These values deviate from a,, 
because the 3 : 1 resonance pumps up asteroid 
e and i values beyond the limits of the target 
region, which in turn increases its contribu- 
tion to the NEA population at the expense of 
the other IS regions. 

The results for the debiased population 
(Fig. 3) focus on H < 18 objects alone be- 
cause these bodies, roughly - 1 km in diam- 
eter (6), are thought to produce global de- 
struction when striking Earth (4, 27) (Table 
1). Starting with the NEA H distribution, we 
find that our estimate of the power law ex- 
ponent y = 0.35 + 0.02 for NNEA(15 < H< 
22) is the same as that derived by earlier 
analyses of Spacewatch data (36) and by the 
NEAT asteroid survey using debiased data 
(8). We predict that there are -910::;: 
NEAs with H < 18, which is about a factor of 
1.5 to 2.0 lower than pre-1999 estimates (27, 
28), but 1.3 times larger than that of Rabi- 
nowitz et al. (a), who used a different nor- 
malization method. 

About half of the NEA population has 
a r 2 AU. Objects in this region are gen- 
erally removed within a few million years 
by solar collisions or through close encoun- 
ters with Jupiter. The remaining NEAs 
reach a < 2 AU orbits by encounters with 
the terrestrial planets, though they must 
first survive passage through multiple res- 
onances between 1.8 and 2.0 AU (that is, 
4 : 1 and 5 : 1 mean-motion resonance with 
Jupiter; v, and v,, secular resonances). In 
terms of bbservational completeness, we 
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predict that -40% of the H < 18 (kilome- 
ter-sized) NEAs have been discovered. 
Many NEAs with e I 0.4 and i 5 10' have 
been discovered (-70 and -60%, respec- 
tively). These NEAs are relatively easy 
targets for asteroid surveys. A significant 
number of NEAs, however, hide at high a, 
e, and i values, making them more difficult 
to detect. 

The fractions of NEAs with 15 < H < 
22 on Amor, Apollo, and Aten orbits (I) are 
29 + 2%, 65 + 2%, and 6 + 2%, respec- 
tively. Few Atens exist because the orbital 
pathways to this region are long and tortu- 
ous enough that significant attrition occurs. 
Using our best-fit parameters, we predict 
there are 26022: Amors, 590?7:, Apollos, 
and 56::: Atens with H < 18. These values 
suggest that -30% of the km-sized Apollos 
and Atens and nearly 70% of the Amors 
have been discovered. Amors generally 
have higher BNEA and lower e, i than do 
Apollos and Atens, which may explain this 
disparity. The asteroid population residing 
inside Earth's orbit (aphelia Q < 0.983 
AU) is about 2% of the NEA population. 
We predict that there are 20:: of the bodies 
with H < 18, with nearly all residing on 
Venus-crossing orbits. 

We can also infer how much material 
comes from the various IS regions. About 
43% of the Apollos and 36% of the Amors 
come from the 3 : 1 resonance. In terms of 
orbitally evolved populations (those closest 
to the sun), 50% of the Atens and the Q < 
0.983 AU asteroids come from the v, reso- 
nance, probably because a large fraction of 
material from the v, resonance (70%) reaches 
a < 2 A U .  

Using the formula D = 4365 X 10-H'5 
(6 )  with y = 0.35 to transform NNEA(H) into 
a cumulative size distribution, we find that 
the average power law slope between 170-m 
and 4-km asteroids is -1.8. This value is 
shallower than the slope for a population in 
simple collisional equilibrium 12.5 (37)] or 
one dominated by fresh collisional debris 
[>2.5 (38)], but it is reasonably close to the 
estimated size distribution of krn-sized aster- 
oids in the main belt (10). It also agrees with 
the size distributions of youthful cratered sur- 
faces on Venus, Earth, Mars, and the moon 
(39). 

If our derived slope is valid, it calls into 
question the scenario for NEA delivery that 
claims that main belt collisions resupply NEAs 
by directly injecting fragments into the 3 : 1 or 
v, resonances (12). The mean lifetime of ob- 
jects in the NEA region is only a few My-too 
short for collisions to significantly change the 
size distribution for fresh debris (13). It is pos- 
sible that different IS regions have different size 
distributions, but it is unclear why collisional 
injection would work better in some main belt 
regions than in others. 

Table 1. Statistics of steady-state NEA and aphelia Q < 0.983 AU populations. The definitions of the 
object classes are given in the text. The percentages refer to predicted values. 

No, of known NEAs with H < 18 
No. of predicted NEAs with H < 18 
Observed completeness for H < 18 NEAs (%) 
a < 2.0 AU (%) 
e < 0.4 (%) 
e < 0.6 (%) 
i < lo0 (%) 
i < 20° (%) 
i < 30° (%) 
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An alternative NEA delivery scenario, 
which is more consistent with our model 
results, is that main belt asteroids drift into 
the 3: 1 or v, resonances via some drag 
force such as the Yarkovsky effect (13). 
The expected drift for km-sized bodies is - 
+ lop4 AU My-': slow enough for new 
debris to undergo collisional evolution be- 
fore entering the IS. The NEA and IS size 
distributions, therefore, may be extensions 
of the main belt size distribution between 
2.1 and 2.8 AU. 

If the Yarkovsky effect is the dominant 
means bv which asteroids enter the IS. we 
expect a,, to vary with size. Numefical sim- 
ulations show that small objects, with fast 
drift rates, jump over the tiny resonances 
feeding the MC regions to enter the powerful 
3 : 1 or v, resonances (13). Conversely, the 
largest NEAs (such as 433 Eros) are hardly 
affected by the Yarkovsky effect, so that their 
most likely source would be the numerous 
tiny resonances feeding the IMC region (1 7). 
In terms of our model results, the a,, values 
we find may be more characteristic of km and 

je& discovered at low 
e and i. 

sub-km NEAs than of multi-kilometer NEAs 
because two-thirds of the Spacewatch NEAs 
have 18 < H < 22. 
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