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Selectivity for 3D Shape That  
Reveals Distinct Areas Within  

Macaque Inferior Temporal  
Cortex  

Peter Janssen, Rufin Vogels,* Guy A. Orban 

The anterior part of the macaque inferior temporal cortex, area TE, occupies a 
large portion of the temporal lobe and is critical for object recognition. Thus 
far, no relation between anatomical subdivisions of TE and neuronal selectivity 
has been described. Here, we present evidence that neurons selective for 
three-dimensional (3D) shape are concentrated in the lower bank of the su- 
perior temporal sulcus, whereas neurons in  lateral TE are generally unselective 
for 3D shape, though equally selective for 2D shape. These findings reveal that 
TE consists of at least two  distinct areas, one of which processes a specific object 
property. 

The inferior temporal cortex (IT) is part of 
the ventral visual stream, which is known to 
be critical for object recognition (I, 2). Neu-
rons in the anterior part of IT, area TE (Fig. 
l) ,  respond selectively to object attributes (3). 
For over three decades, researchers have been 
puzzled by the organization of this large cor- 
tical region [up to 380 mm2 (4)]. Although 
TE can be divided into a number of subre- 
gions on the basis of anatomical criteria (9, 
no clear link between the anatomy and neu- 
ronal selectivity has yet emerged. Here, we 
present evidence, based on 3D shape-selec- 
tivity, that at least two areas can be distin- 
guished within TE: the lower bank of the 
superior temporal sulcus (STS) and lateral 
TE. 

Thirty-two pairs of disparity-defined ( 6 )  
curved 3D shapes served as stimuli. The 3D 
shape-selectivity was assessed by comparing 
the responses of single TE neurons to the 
members of pairs of 3D shapes differing only 
in the sign of their binocular disparity (con- 
cave versus convex) (7). Reconstruction of 
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the position of each recorded neuron (Fig. l )  
(8 )showed that 142 neurons were recorded in 
the lower bank of the STS and 82 in lateral 
TE (9). Figure 2A illustrates the responses of 
an STS neuron that responded strongly to the 
concave, but not to the convex shape (10). 
Monocular presentations to left or right eye 
separately evoked only minimal responses 
(11).This 3D shape-selective response con- 
trasted markedly with the responses of lateral 
TE neurons. Although the lateral TE neuron 
of Fig. 2B responded to the concave shape, 
the response to the convex shape was equally 
strong. Moreover, the monocular presenta- 
tions elicited responses that were similar to 
those in the stereo conditions. This response 
pattern, combined with the 2D shape-selec- 
tivity revealed by the search test (7), indi- 
cates that this neuron was not sensitive to 3D 
structure, but simply responded to the 2D 
shape. 

Overall, 56% of the tested STS neurons 
were selective for 3D shape, compared to 
only 12% in lateral TE (i2= 40.9, P < 
0.001) (12, 13). Moreover, the degree of 3D 
selectivity was much lower in lateral TE (14), 
though the mean net response to the preferred 
3D shape did not differ significantly between 
the two subdivisions (20.2 and 19.1 spikes 
per second for the STS and lateral TE, re- 
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spectively. Kolmogorov-Smirnov test, non- indicates that the difference between STS and monocular responses)l(sum of the monocular 
significant). The difference in the population lateral TE was indeed due to 3D shape- responses). The median binocular summation 
response to preferred and nonpreferred 3D selectivity. Although lateral TE neurons are index for the STS neurons (+0.18; n = 142) 
shape is larger for STS than for lateral TE clearly selective for 2D shape, they are gen- was significantly larger than that for the lat- 
neurons (Fig. 3A) (15). Differences in popu- erally not selective for 3D shape, even for eral TE neurons (-0.41; n = 82) (18). The 
lation responses contain an analysis-induced large disparity values (1 7). binocular summation observed in STS neu- 
component because the stimulus evoking the The response of the STS neurons to the rons reflects their selectivity for 3D shape, 
largest response is always selected as the preferred 3D shape was generally larger than because binocular presentation of the nonpre- 
preferred stimulus, even for nonsignificant the sum of the monocular responses (Figs. 2A ferred 3D shape, which contained the same 
response differences. The population of lat- and 3B). Typically, the opposite was true for monocular images as the preferred 3D shape 
era1 TE neurons was no more sensitive to 3D lateral TE neurons (Figs. 2B and 3B). We (Fig. 2A), evoked no binocular summation 
structure than a population of statistically defined a binocular summation index as (re- (median summation index = -0.65). 
nonselective neurons (n = 135, Fig. 3A), sponse to preferred 3D shape) - (sum of the The rostral part of the lower bank of the 
derived from STS (47%) and lateral TE 
(53%). Fig. 2. Responses of A aemo lefteye rlgMeye 

We tested whether 3D shape-selective STS (A) and lateral TE 
neurons respond to particular disparity values The left 'a' m'y* 

panel illustrates the within the stimulus (far versus near), or, al- images presented to 
ternatively, to spatial variations of disparity left and rig.,t eye for 
(concave versus convex) by presenting the the preferred (top row) 
preferred and nonpreferred 3D shapes at five and the nonpreferred ~ I B -4 

d l , ,  *I 
different positions in depth. The large major- (bottom row) 3D shape. 11 - 
ity of STS neurons tested (37142) responded The middle panel illus- 

trates the perceived 3D B to spatial variations of disparity, not to local structure (semi-dindi- 
la0 S~R~SIOSC 

disparity values. None of four lateral TE neu- cally concave and con- 
rons tested could be classified as responsive vex). This illustration 
to disparity variations. does not display the 

The difference in 3D shape-selectivity be- actual borders of the 
tween STS and lateral TE might reflect a *imdus.Theright pan- 

el. shows the neuronal mere generalized difference in stimulus se- responses to binocular 
lectivity for the stimuli we used. However, and monoc- 
lateral TE ~ ~ u r o n s  were as selective for 2D ular ("left eye" and "right eye") presentation of preferred and nonpreferred 3D shapes. Bin width 
shape as the neurons in the STS (Ib),  which is 20 ms. 

Fig. 1. Anatomical re- 
construction of the re- 
cording sites. (A) Su- 
perposition of the MR 
(blue) and the CT 
coronal section (black). 
The vertical bar is the 
guiding tube, the red 
line the electrode track 
(6) Lateral view of the 
macaque brain show- 
ing the anterior-poste- 
rior extent of the re- 
cordings (vertical lines). 
The shaded area cor- 
responds to  area TE. 
(C) Estimated record- 
ing zones in STS (blue) 
and lateral TE (green). 
The red lines indicate 
the rnedio-lateral range 
used in (D), the right 
one corresponds to the 
penetration shown in 
(B). Arrows indicate 
fundus (a) and lip (b) 
of the STS, and lateral 
border of thie anterior 
middle temporal sul- 
cus (AMTS) (c). (D) Av- 
erage d e ~ t h  [in mi- 
cr&etei) of 'the si- Mdohtoml p0dtI0n # n ~  
lent zones (dotted lines) 
and the skull (full line), for three medio-lateral bins spaced 2 mm apart. area indicates that posteriorly, STS neurons were weakly responsive. 
Same scale as in (C). (E) Flattened map of the estimated recording area Most responsive neurons were recorded in rostral STS. (F) Shown are the 
(average of the two monkeys). (a), (b), and (c) are as in (C). The pale blue 2D shapes used to  derive the 3D stimuli. 
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Fig. 3. Population responses. (A) Population peristimulus-time histograms (PSTHs) for preferred 
(red) and nonpreferred (blue) 3D shape, for STS (left panel), lateral TE (middle panel), and all 
statistically nonselective neurons (right panel). (B) Population PSTHs for the response to  the 
preferred 3D shape in the stereo and in the monocular conditions, for STS (black) and lateral TE 
neurons (green). 

STS corresponds to cytoarchitectonic areas 
TEa and TEm (5). The connectivity of this 
region is distinct from that of lateral TE (9). 
The cortex in the intraparietal sulcus (IPS), 
the terminus of the dorsal visual pathway, 
connects with the lower bank of the STS, but 
less so with lateral TE (19, 20). In addition, 
the lower STS is more closely connected to 
TEav than to TEad (21). Our results suggest 
a specific role for this pivotal brain region: 
the lower bank of the STS is the part of TE 
which processes disparity-defined 3D shape 
(22, 23). This finding has two major implica- 
tions. Firstly, our results provide a functional 
role for the parietal connections of the STS, 
because the caudal bank of the IPS contains 
neurons selective for disparity-defined orien- 
tation in depth (24). Thus, these two inter- 
connected areas, belonging to the dorsal and 
to the ventral streams, are both involved in 
the processing of 3D-structure (25). Second- 
ly, in view of the distinct cyto- and myeloar- 
chitecture, the specific pattern of connections 
and the functional specialization of the lower 
bank of the STS, this region should be re- 
garded as a distinct area within TE. 
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