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mGluRl in Cerebellar Purkinje 
Cells Essential for Long-Term 

Depression, Synapse 
Elimination, and Motor 

Coordination 
Taeko Ichise,' Masanobu ~ a n o , ' , ~  Kouichi Ha~hirnoto,'-~ 
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Targeted deletion of metabotropic glutamate receptor-subtype 1 (mCluR1) 
gene can cause defects in development and function in the cerebellum. We 
introduced the mCluR1a transgene into mCluR1-null mutant [mCluRl (-I-)] 
mice with a Purkinje cell (PC)-specific promoter. mCluR1-rescue mice showed 
normal cerebellar long-term depression and regression of multiple climbing 
fiber innervation, events significantly impaired in mCluR1 (-I-) mice. The 
impaired motor coordination was rescued by this transgene, in a dose-depen- 
dent manner. We propose that mCluR1 in PCs is a key molecule for normal 
synapse formation, synaptic plasticity, and motor control in the cerebellum. 

mGluRs are G protein-coupled glutamate re- 
ceptors and are implicated in modulation of 
synaptic transmission and plasticity (I). 
mGluRl (-I-) mice have characteristic cer- 
ebellar symptoms such as ataxic gait, inten- 
tion tremor, and motor discoordination (2-4). 
The blockade of mGluRl by antiserum to 
mGluRl results in ataxia, suggesting that 
mGluRl is required for motor coordination 
(5). In mGluRl (-I-) mice, the anatomy of 
the cerebellum, the morphology of PCs, and 
the synaptogenesis onto PCs from parallel 
fibers (PFs) are normal. However, develop- 
mental transition from multiple to mono-in- 
nervation of PCs by climbing fibers (CFs) 
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( 6 ) ,the other excitatory input to PCs ( 7 ) , is 
impaired during the third postnatal week (8). 
Long-term depression (LTD) at PF-PC syn- 
apses is clearly deficient in mGluRl (-I-) 
mice (3, 4). Thus, mGluRl is thought to be 
essential for CF synapse elimination and 
LTD induction, and its disruption may con- 
tribute to motor deficits of mGluRl ( - / - )  
mice. However, mGluRl is expressed in var- 
ious cell types in the central nervous system 
(CNS) other than PCs. Hence it is not clear to 
what extent mGluRl in PCs contributes to 
these phenotypes. 

We introduced a transgene (L7-mGluR1) 
that expressed mGluRlcr under the control of 
the PC-svecific L7 vromoter (Fie. 1. A and B)

\ - ,  

into the mGluRl (-I-) mice. One line of 
transgenicmicehomozygous for endog-

mG1uR1 showed the 
restricted expression of the transgene (Fig. 1C) 
(9).(We refer to these mice as mGluR1-rescue , ~ 

mice,) neamount of m ~ l u ~ l c lprotein in 

mGIUR1-rescue was about 
less than that in w i l d - t ~ ~ ecerebella (Fig. 1C). 
mGluRla imrnunoreactivity was abundant in 
the cerebellum, o l fac to~  bulb, and thalamus in 
wild-type mice, whereas it was restricted to the 
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cerebellum in mG1uRl-rescue mice (Fig. 1E) 
(10). High-magnification micrographs revealed 
that mGluRla was selectively localized in 
dendrites of PCs in mGluR1-rescue mice. 
mGluR1-rescue mice showed no ataxic gait 
or tremor and could walk along a straight line 
as do wild-type littermates (Fig. ID). How- 
ever, because mGluR1-rescue mice got more 
excited than wild-type mice when their tails 
were grasped, the experimenter easily recog- 
nized mGluRl-rescue mice without knowing 
their genotype. This hyperexcitability was 
similar to that of mGluRl (-I-) mice. 

We asked whether CF synapse elimina- 

tion could be restored by introducing the 
mGluRla transgene (11). When a CF was 
electrically stimulated, a clearly discernible 
excitatory postsynaptic current (EPSC) was 
elicited in an all-or-none fashion in the ma- 
jority of wild-type and mGluR1-rescue PCs 
(Fig. 2, A and E, upper traces) and in about 
40% of mGluRl (-I-) PCs (Fig. 2C, upper 
trace). In the remaining PCs, more than one 
discrete CF-EPSC was elicited at different 
stimulus sites or at one stimulus site with 
different stimulus thresholds (Fig. 2, A, C, 
and E, lower traces). The number of CFs 
innervating the recorded PC was estimated 

D P - 2.6 k b  
b wild-type rnGluR1 

D P 

0.8 kb 
c mutant mGluRl 

c cortex cerebellum E 

-* . * 
p a  
, < +: ' . . 

. / ', 4 p" 
* I  

. . #  

' w  - . . 
wad-type mGluR1 (-I-) mGluRl -rescue 

Fig. 1. Generation of L7-mGluRla transgenic mice and expression of L7-mGluRla transgene. (A) (a) 
Schematic structure of the transgene construct with the probe for Southern blots. Rat mGluRla cDNA 
was inserted into the L7 promoter vector. Open boxes represent exons of the L7 gene (El to E4). (b and 
c) Schematic structure of the wild-type (b) and mutant (c) mGluRl alleles. Closed and hatched boxes 
show coding and noncoding regions of the mGluRl exon, respectively. Numbers signify lengths in base 
pairs, and the Letters indicate restriction sites. D, Dra I; P, Pvu II.  (B) Southern blot analysis of tail DNA. 
Genomic DNA was isolated from a litter obtained by breeding mGluR1 (+I-) mice with mGluR1 (+I-) 
(Tg/+) mice. Endogenous mGluR1 gene and transgene are indicated by the presence of a 0.8-kb and a 
2.6-kb Dra I-Pvu I I  fragment, respectively. (C) Total proteins extracted from wild-type, mGluR1-rescue 
(Tg/+), and mGluR1-rescue (Tug)  cerebral cortices and cerebella were blotted and probed with 
polyclonal antibodies to mGluR1. Lanes 1, 2,3, 7, and 8 contained 40 pg of proteins; lanes 4, 5, and 6 
contained 4,2, and 1 pg of proteins, respectively. (D) Footprint patterns: mGluRl (-I-) mice walked 
with a wide-base rolling motion from side to side. Their steps appeared to be shorter, and their feet 
tended to sweep along. In contrast, mGluR1-rescue mice could walk a straight line, as did their wild-type 
littermates. (E) Parasagittal sections stained with antibody to mGluRla, from wild-type (a and b), 
mGluRl (-I-) (c and d), and mGluR1-rescue mice (e and f). M, molecular layer; P, Purkinje cell layer; 
G, granule cell layer. 

based on the number of discrete CF-EPSC 
steps elicited in that PC (8, 12) (Fig. 2, B, D, 
and F). As reported in (a), mGluRl (-I-) 
mice had a significantly higher percentage of 
PCs with multiple CF innervation than the 
wild-type mice (P < 0.01, x2 test, Fig. 2, B 
and D). In contrast, mGluR1-rescue mice had 
almost the same percentage of PCs with mul- 
tiple CF innervation as the wild-type mice 
(P > 0.05, x2 test, Fig. 2, B and F). 

We next determined if LTD at PF-PC 
synapses would be restored in mGluR1-res- 
cue mice (13). In PCs of wild-type mice, 
conjunctive PF and CF stimulation (CJS) at 1 
Hz for 5 min (300 stimuli) resulted in LTD of 
the initial slope of PF-mediated excitatory 
postsynaptic potentials (PF-EPSPs) (Fig. 
3A), whereas the same protocol did not in- 
duce LTD in mGluRl (-/-) mice (Fig. 3B). 
In contrast, LTD was induced normally in 
mGluR1-rescue mice (Fig. 3C). 

The cerebellum is implicated in neural 
mechanisms for interlimb coordination dur- 
ing locomotion (3, 14). We analyzed the 
temporal relation between the footfall of one 
limb and that of the other limb during tread- 
mill locomotion (Fig. 4A) (15). In wild-type 
mice, phase intervals between the locomotor 

Fig. 2. Normal regression of multiple CF innerva- 
tion in PCs of mGbR1-rescue mice. (A) Sample 
records of CF-EPSCs from wild-type PCs. One to 
three traces each were superimposed at threshold 
intensities. (B) Summary graph showing frequen- 
cy distribution of PCs in terms of the number of 
discrete steps of CF-EPSCs from wild-type mice. 
(C and D) Data from mGluR1 (-I-) PCs. (E and 
F) Data from mGluR1-rescue PCs. Numbers of 
tested PCs: n = 77 (from five mice) for (A) and 
(B), n = 132 (from nine mice) for (C) and (D), and 
n = 144 (from nine mice) for (E) and (F). 
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belt velocity, and step-cycle durations were dependent increases in mGluRla expression 
different between the fore- and hindlimbs. (Fig. lC), they managed to stay on the rod for 

mGluRl (-I-) mice showed a reduction over 100 s by the fourth trial. There was no 
in total walking distance in the open field (4). significant difference between retention time of 
In contrast, we observed no significant dif- wild-type and mGluR1-rescue (Tg/Tg) mice 
ferences between wild-type and mGluR1-res- (Fig. 4D). Thus, the level of mGluRl in PCs 
cue mice (Fig. 4C) (16). Restoration of loco- appears to be the determining factor for perfor- 
motor activity in mGluRl-rescue mice sug- mance of motor coordination on the rotating 
gests that the lack of mGluRl in brain regions rod task. 
other than the cerebellum did not alter the The gene targeting technique is a pertinent 
motivational state for locomotion. and powerfUl tool to examine the function of a 

To further examine motor coordination, we gene in vivo. However, if the gene is expressed 
used the rotating rod task (1 7). Wild-type mice in various brain regions or during the course of 
quickly learned how to keep themselves on the development, and if there is no regional or 
rod, whereas mGluRl (-I-) mice fell off im- temporal restriction in deletion of the gene, it is 
mediately once the rod began to turn (Fig. 4D) difficult to attribute the observed abnormality to 
(3). During any given trial, the average reten- the lack of the gene product in a specific brain 
tion time of mGluR1-rescue mice was shorter region. Here, we returned the missing 
than that of the wild-type mice (Fig. 4D). How- mGluRla only into PC with a PC-specific pro- 
ever, when we examined the mGluR1-rescue moter. The impaired cerebellar CF synapse 
(TgJTg) mice, which are homozygous for the elimination, deficient LTD, and motor discoor- 
L7-mGluRla transgene and display gene dose- dination observed in mGluRl ( - I - )  mice were 
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tivity; and rotating rod 14test. fAl Phase relation- I I 
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cycles of two limbs were sharply distributed 
around 1 80°, indicating regular alternations 
of step cycles between two limbs. However, 
in mGluRl ( - I - )  mice there was wide dis- 
persion of phase intervals, suggesting a se- 
vere impairment of interlimb coordination. In 
mGluRl-rescue mice, phase intervals be-
tween two limbs were distributed around 
180" with a narrow dispersion, indicating that 
their interlimb coordination was normal. 
When the belt velocity of the treadmill was 
increased, the step cycle duration progres- 
sively decreased in wild-type and mGluR1- 
rescue mice (Fig. 4B). However, mGluRl 
(-I-) mice did not adapt to change in the 
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er than those of two 
other mouse strains 
(one-way analysis of 
variance). (B) fhe step 
cycle duration of fore- 
limbs (filled columns) 
and hindlimbs (hatched 
columns) against dif-
ferent belt velocities. 
Data (mean 2 SD) for 
90 steps obtained from 
three mice. (C)Sponta-
neous locomotor activ- 
ities in the open field. 
Horizontal activities in Time (min) 
a novel environment 
for wild-type (n = 7), 
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7), and mCluR1-rescue Time iminl~.
mice (n = 7) were 

measured every 30 min over a 2-hour period in daytime with a behavioral tracing analyzer (Muromachi 

Kikai, Tokyo). Error bars represent SEM (in the first session: wild-type, 9602 t635.6 cm; mCluR1-rescue, 

9914 t 892.5 cm; P > 0.5, t test, n = 7). (D)Rotating rod task. Data represent average of five 

consecutive trials (maximum retention time, 120 s; rotation speed, 8 rpm). Number of mice examined: 

n = 10 for wild-type, mCluR1 (-I-), and mCluR1-rescue (Tg/Tg) mice and n = 8 for mGluR1-rescue 

(Tg/+) mice. Error bars represent SEM. *P < 0.001, t test wild-type versus mCluR1-rescue (Tg/+) 

mice; t P  > 0.9 and :P > 0.1, t test wild-type versus mCluR1-rescue (Tg/Tg) mice. 


Fig. 3. Normal LTD in PCs of mCluR1-rescue 
mice. (A) In PCs of wild-type mice, conjunctive 
PF and CF stimulation (CJS) at 1 Hz for 5 min 
(300 stimuli) resulted in LTD of the PF-EPSP 
initial slopes (n = 7 from five mice). The data 
points represent mean +- SEM. Inset shows 
superimposed PF-EPSP traces recorded before 
conjunctive stimulation and 30 min after. (8) 
Data obtained from PCs of mCluR1 (-I-) mice 
(n = 7 from four mice). (C) Data from PCs of 
mCluR1-rescue mice (n = 10 from seven mice). 
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all restored. Our results indicate that mGluRl in 
PCs is essential for these three events and sug- 
gest that mGluRl in PC is a key molecule 
needed for normal development and function of 
the cerebellum. A rescue experiment with tis- 
sue-specific promoter is a most productive ap- 
proach to specify the brain region or cell type 
responsible for the phenotype observed in con- 
ventional knockout mice. 
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Theories of the regulation of cognition suggest a system with two necessary 
components: one to implement control and another to monitor performance 
and signal when adjustments in control are needed. Event-related functional 
magnetic resonance imaging and a task-switching version of the Stroop task 
were used to examine whether these components of cognitive control have 
distinct neural bases in the human brain. A double dissociation was found. 
During task preparation, the left dorsolateral prefrontal cortex (Brodmann's 
area 9) was more active for color naming than for word reading, consistent with 
a role in the implementation of control. In contrast, the anterior cingulate 
cortex (Brodmann's areas 24 and 32) was more active when responding to 
incongruent stimuli, consistent with a role in performance monitoring. 

Cognitive control has long attracted the control generally refers to a resource-lim- 

attention of philosophers and psychologists ited system that guides voluntary, complex 

interested in how the human brain carries actions. Solving difficult, novel, or com- 

out the higher functions of awareness, plex tasks, overcoming habitual responses, 

memory, and language. The concept of and correcting errors all require a high 
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