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Regulation of B Lymphocyte 
and Macrophage Development 
by Graded Expression of PU.l 

Rodney P. DeKoter and Harinder Singh* 

The ets family transcription factor PU.l is required for the development of 
multiple lineages of the immune system. Using retroviral transduction of PU. 7 
complementary DNA into mutant hematopoietic progenitors, we demonstrate 
that differing concentrations of the protein regulate the development of B 
lymphocytes as compared with macrophages. A low concentration of PU.1 
protein induces the B cell fate, whereas a high concentration promotes mac- 
rophage differentiation and blocks B cell development. Conversely, a transcrip- 
tionally weakened mutant protein preferentially induces B cell generation. Our 
results suggest that graded expression of a transcription factor can be used to 
specify distinct cell fates in the hematopoietic system. 

The ets family transcription factor PU. 1 rep- 
resents a unique transcriptional regulator within 
the hematopoietic system (I). It is required 
for the proper generation of both myeloid 
lineages (macrophages and neutrophils) and 
lymphoid lineages (B and T lymphocytes) 
(2). The blocks to B cell and macrophage 
development caused by the loss of PU.1 
function are more severe than defects in neu- 
trophil (3, 4)  and T cell (5) development. 
PU.1 is essential for regulating the prolifera- 
tion and differentiation of macrophage and B 
lineage progenitors (3, 6). PU. 1 regulates the 
expansion of such progenitors by controlling 
the expression of the c-fms and IL-7Ra genes, 
which encode receptors for macrophage col- 
ony-stimulating factor (M-CSF) and interleu- 
kin 7 (IL-7), respectively (3, 7). Macrophage-
and B lineage-specific gene expression pro- 
grams are also severely affected by the PU. 1 
mutation (2, 3, 8). 

To analyze the function of PU.l in B cell 
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and macrophage development, we estab-
lished a system for efficient retroviral trans- 
duction of murine fetal liver hematopoietic 
progenitors. On embryonic day 14.5, PU. 1 '-+ 

or PU. I-'- progenitors were enriched using 
a lineage-depletion protocol (9), then infected 
by coculture with retroviral packaging cells, 
which stably produce high titers of mu-
rine stem cell virus (MSCV) vectors (10). 
PU.1+'-lineage-depleted (Lin-) progenitors 
infected with a control virus (MSCV-EGFP) 
proliferated and differentiated on S 17 stromal 
cells (10, 11) into pro-B cells (CD19+, 
B220t, CD43+, and c-kitt) and macro-
phages (Mac-1+) in 10 to 14 days. The ma- 
jority of cells were pro-B (86 + 4%, n = 7); 
a minor fraction were macrophages (7 + 3%, 
n = 7). PU. 1- '  L i n  progenitors could not 
be productively infected with the control vi- 
rus, because they failed to proliferate and 
died during the initial coculture. In contrast, 
P U . 1 - '  progenitors infected with the PU. 1 
virus (MSCV-EGFP-PU.l) and cultured on 
S17 survived and proliferated in response to 
IL-7. We found it intriguing that after 10 to 
14 days these cultures contained many more 
macrophages (56 5 4%, n = 6) than pro-B 
cells (19 5 5% n = 6). Identical results were 
obtained using M-CSF-deficient OP9 stro- 
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ma1 cells (IZ), suggesting that the increased 
proportion of macrophages observed with 
PU. 1-transduced mutant progenitors was not 
simply due to increased M-CSF-dependent 
proliferation. As did their heterozygous coun- 
terparts, PU. 1-rescued pro-B cells expressed 
CD19, B220, CD43, and c-kit; the B-lineage- 
specific genes mb-I, B29, X5, and VpreB; and 
they underwent V(D)J recombination at the 
IgH locus. Further analysis of the flow cy- 
tometry data from these experiments revealed 
that most macrophages expressed high levels 
of green fluorescent protein (GFP), whereas 
the pro-B cells were low or lacking in GFP 
(Fig. 1). If one assumes, in our vector system, 
that expression of PU.l from the viral pro- 
moter is correlated with expression of GFP 
from an internal promoter (1 0), these results 
suggest that differing concentrations of PU. 1 
protein are required to promote development 
of B cells or macrophages. 

To analyze PU. 1 expression, rescued cells 
were expanded under conditions that select 
for pro-B cells or macrophages (13). After 
expansion, rescued pro-B cells no longer ex- 
pressed GFP as seen by flow cytometry (Fig. 
2A) or Western blotting. However, these cells 
expressed detectable PU. 1 transcripts and 
protein but at substantially lower levels than 
their macrophage counterparts (one-fifth to 
one-seventh as much) (Fig. 2B) (14). We 
suggest that the two distinct levels of PU.1 
gene expression observed in the rescued 
pro-B cells versus macrophages are due to 
selection imposed on the differential activity 
of the retroviral long terminal repeat (LTR), 
which is caused by integration in distinct 
chromatin environments (15). It is notewor- 
thy that wild-type macrophages express high- 
er levels of PU.l protein than their pro-B 
counterparts (Fig. 2C) (16). These results 
agree with earlier reports that PU.l  FWA is 
expressed at higher levels in myeloid than in 
B lymphoid cell lines (1 7). Because the lev- 
els of PU.l in wild-type and rescued macro- 
phages are equivalent (Fig. 2, B and C), it is 
unlikely that the higher levels of PU.l in 
rescued macrophages compared with pro-B 
cells are a consequence of retroviral expres- 
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Fig. 1. Analysis of pro-B 
cells and macrophages 

R E P O R T S  

PU.l+/- PU. I +/- 
+ MSCV-EGFP _= + MSCV-EGFP-PU.1 

1 

induced by transduc- ,, 
tion of PU. 1-/- hema- ' 
topoietic progenitors 1 
with MSCV-EGFP-PU.l 
retrovirus. Schematic 'b 
depicts various do- 
mains of the PU.l tran- 
scription factor. Ernbry- 2 
onic day 14.5 PU.7-/- 8% 
Lin- fetal progeni- CFP 
tors were 'inf&ted 
with the PU.l retrovi- 
rus and differentiated on 517 stromal cells with IL-7. Cells from these cultures were analyzed by 
flow cytometry for expression of GFP and CD19 (left panel) or GFP and Mac-I (center panel). 
Morphological analysis of pro-B cells and macrophages was performed by Wright's staining (right 
panel, original magnification 1 0 0 0 ~ ) .  

Fig. 2. PU.l mRNA and A 
protein levels in rescued 
or normal pro-B cells Q 
and macrophages. (A) 
GFP expression in res- 
cued PU.1-/- pro-B ' 
cells and macrophages. 
IL-7-dependent Pro-B 
cells (*Pro4 cells) and 
M-CSFdependent mac- 
rophages (*Macrophages) 
generated by PU. 1 trans- 
duction of PU. ?-'- pro- 8 
genitors were analyzed 
by flow cytometly for 
GFP expression. Non- , 
transduced, wild-type GFp F 
pro-B cells were used as 
a control (dashed line). (B) Reverse transcriptase (RT)-PCR and 
Western analysis of PU. 1 mRNA and protein in PU. 1-transduced 
PU.1-/- pro-B cells and macrophages. RNA from 517 stromal 
cells, *Pro-B cells, or *Macrophages was analyzed using 25 cycles 
of RT-PCR with primers specific for PU. 1 or hptt (upper panels). 
PU.1 protein was analyzed using lysates from 5 x lo5 cells per 
Lane and an anti-PU.l antibody. Protein Levels were normalized 
using a cross-reactive band (Ref.) detected with an anti-TATA 
binding protein (TBP) antibody, as TBP levels were lower in 
rnacrophages compared with pro-B cells (lower panels). (C) 
Analysis of PU.l protein in  wild-type pro-B cells and macrophages. 
Lysates (5 X lo5 cells per lane) were analyzed by Western 
blotting as above. 

sion and in vitro differentiation. Thus, a high- 
er concentration of PU. 1 protein is required to 
promote macrophage rather than B lympho- 
cyte development. 

If maintaining a low concentration of PU. 1 
is a requirement for B cell specification, then 
overexpression of PU.1 in normal progenitors 
should block B cell development and promote 
macrophage differentiation. To test this hypoth- 
esis, PU.I+/- Lin- fetal progenitors were in- 
fected with either the control or PU. 1 retrovirus 
and differentiated on S17 cells with IL-7. With 
the control virus, 85 + 3% (n = 3) of the GFP+ 
cells were pro-B cells, whereas 12 + 3% (n = 
3) were macrophages (Fig. 3), demonstrating 
that high- level GFP expression from the retro- 
viral vector is sustainable in pro-B cells. In 
contrast, infection of PU.l+/- progenitors with 
the PU.1 virus resulted in only 3 + 2% (n = 3) 
of GFP+ cells being pro-B. The majority of the 

GFP+ cells (88 t 4% , n = 3) were macro- 
phages. Notably, the GFP+ pro-B cells ex- 
pressed GFP at low levels (Fig. 3, upper right 
panel). Because GFP expression is correlated 
with that of PU.1, these results support the 
hypothesis that overexpression of PU. 1 in nor- 
mal progenitors blocks B cell development 
and promotes macrophage differentiation. 

PU. 1 contains multiple activation domains 
embedded in acidic (amino acids 7 to 74) and 
glutamine-rich (75 to 100) segments (Fig. 1) 
(18). To test whether these activation do- 
mains are differentially required in B cell and 
macrophage development, we constructed 
retroviral vectors expressing proteins desig- 
nated AN100, AN74, and AN75-100, which 
lack amino acids 1 to 100, 1 to 74, and 75 to 
100, respectively (19). PU.1-/- Lin- pro- 
genitors were infected with the various mu- 
tant PU.1 retroviruses and cultured on S17 

- GFP .. 
Fig. 3. Effect of PU.l overexpression on differ- 
entiation of PU. 7 +/- progenitors. Embryonic 
day 14.5 PU. I+/- Lin- progenitors were infect- 
ed with MSCV-EGFP (left panels) or MSCV- 
EGFP-PU.l (right panels) retrovirus and differ- 
entiated on 517 stromal cells with IL-7. Cells 
were analyzed by flow cytometry for expres- 
sion of GFP and CD19 (upper panels) or GFP 
and Mac-I (lower panels). 

cells with IL-7. Only the AN75-100 PU.1 
protein restored the ability of these progeni- 
tors to proliferate on the stroma with IL-7. In 
a striking way, this mutant protein, unlike its 
wild-type counterpart (compare Fig. 4 with 
Fig. l), preferentially induced the generation 
of pro-B cells (72 t 5%, n = 3) rather than 
macrophages (16 + 3, n = 3). A comparison 
of Fig. 4 with Fig. 1 also reveals that many of 
the pro-B cells rescued with the AN75-100 
PU.l mutant express higher levels of GFP, 
suggesting that higher concentrations of this 
transcriptionally weak activator can promote 
B cell development. To quantitatively assess 
the ability of the AN75-100 PU.l mutant to 
induce the generation of macrophage progen- 
itors, we infected PU.1-'- progenitors in the 
presence of multilineage cytokines and plated 
them in methylcellulose cultures containing 
M-CSF (20). Under these conditions, AN75- 
100, but not AN74 or AN100, PU. 1 proteins 
induced the development of macrophage pro- 
genitors. However, wild-type PU. 1 induced 
approximately 70 times as many macrophage 
colonies per los transduced progenitors (535 t- 
18, n = 2) as AN75-100 (8 + 3, n = 2). It is 
noteworthy that the colonies induced with 
AN75-100 were similar in size to those 
obtained with the wild-type protein and 
contained morphologically normal macro- 
phages. Thus the mutant protein is not de- 
fective in supporting the proliferation of 
macrophage progenitors. Collectively, these 
results demonstrate a quantitative effect of 
deletion of the glutarnine-rich transactivation 
domain on generation of macrophage pro- 
genitors. These experiments suggest that 
lower levels of PU.l activity are required 
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R E P O R T S  

Fig. 4. Analysis of pro-B I ~ C l n l p l  PEST 160 E ts 2 2 
cells and macrophages Pu.l~N75-100 I 
induced bv transduc- - 
tion of PU.>-/- hema- 
topoietic progenitors 
with MSCV-ECFP-PU.l 
AN75-100 retrovirus. 
Schematic depicts the 
PU.l AN75-100 cDNA. 
Embryonic day 14.5 
PU. 7-"- Lin- fetal pro- 
genitors were infected 
with the PU.l AN75- 

w 
GFP 

100 retrovirus and dif- 
ferentiated on S17 stromal cells with IL-7. Cells from these cultures were analyzed by flow 
cytometry for expression of CFP and CD19 (left panel) or CFP and Mac-I (center panel). 
Morphological analysis of pro-B cells and macrophages was performed by Wright's staining (right 
panel, original magnification 1 0 0 0 ~ ) .  
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