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Mechanism of ATP-Dependent 
Promoter Melting by 

Transcription Factor IIH 
Tae-Kyung Kim,' Richard H. Ebright: Danny Reinberg1* 

We show that transcription factor IIH ERCC3 subunit, the DNA helicase re-
sponsiblefor adenosine triphosphate (ATP)-dependent promoter meltingdur-
ing transcription initiation, does not interact with the promoter region that 
undergoes melting but instead interacts with DNA downstream of this region. 
We show further that promoter melting does not change protein-DNA inter-
actions upstream of the region that undergoes melting but does change in-
teractions within and downstream of this region. Our results rule out the 
proposalthat IIH functions in promoter melting through a conventional DNA-
helicase mechanism. We propose that IIH functions as a molecular wrench: 
rotatingdownstreamDNA relativeto fixed upstreamprotein-DNAinteractions, 
thereby generating torque on, and melting, the intervening DNA. 

Human transcriptionfactor IIH consists of nine 
polypeptides with masses of 31to 90 kD (1-3). 
IIH is responsible for three critical functions in 
transcription: phosphorylation of the COOH-
terminal domain (CTD) of the RPBl subunit of 
RNA polymerase II (RNAF'II), promoter melt-
ing, and promoter clearance. 

IIH-dependent CTD phosphorylation re-

quires ATP and is mediated by the IIH cdk7 
subunit, which is a cyclin-dependent protein 
kinase (1-3). The role of IIH in promoter melt-
ing is to melt about one turn of DNA encom-
passing the transcription start site to yield the 
"transcription bubble" (4, 5). This process re-
quires ATP (4, 5) and is mediated by the IIH 
ERCC3 subunit (6, 7) (also referred to as 

Fig. 1. Results of protein-DNA photo-cross- A 
TBFRlinking experiments. (A) Representative data. TBFRE 

" ..~~F~;transcri~tion-com~Lex.intermediatecon- N * r ~  n m ? 6  
taining RNAP~I,TBP, IIB, \IF, and promoter DNA 
(78);TBFRE, TBFR plus IIE; TCC, transcription-
allv comoetent com~lex.consistine of TBFR 
p~;s IIE And IIH; TCC'+ ATP, transGiptionally 
competent complex after ATP-dependent CTD 
phosphorylation and promoter melting. RPBl 
and RPB1-Pn denote forms of the largest sub-
unit of RNAPll having unphosphorylated CTD 
and phosphorylatedCTD, respectively. Data are 
shown for positions -2, +S, +13,and +21 of 
the DNA nontemplate strand. (B)Representative data for experiments assessing 
NTP specificity (positions -2, +5, and + I 3  of DNA nontemplate strand). (C) 
Representativedata confirming identities of cross-linked IIEa [(left) parallel exper-
iment with llEa(1-394) (37, 49)] and IIH ERCC3 [(right) immunoprecipitationwith 
antibody to ERCC3 of cross-linked polypeptide (32)]. (D) Representative data 
demonstrating increase in fraction of complexes competent for CTD phosphoryl-
ation (top; analysis of electrophoretic mobility of cross-linked RPBI) and transcrip-
tion [bottom; quantitation of transcription(arbitraryunits) and RNAPll content (1.0 
unit = 20 fmol RNAPII) upon Sarkosyl washing (24)]. 

TCC 

Verlag and R. C. Landes Co.. Berlin, and Georgetown, 
TX, 1998). 

34. Supported by the Indian lnstitute of Science, the 
University of Peradeniya (Sri Lanka), the Sarawak 
Forest Department (Malaysia), the Forest Research 
lnstitute of Malaysia, the Royal Thai Forest Depart-
ment, the Smithsonian Tropical Research Institute, 
the Japanese National lnstitute of Environmental 
Studies, the Japanese Ministry of Education and Sci-
ence, the National Science Foundation, and the John 
D. and Catherine T. MacArthur Foundation. R.C. 
thanks J. Franklin's group in the College of Forest 
Resources at the University of Washington for sup-
port during a sabbatical. 

23 December 1999; accepted 28 March 2000 

XPB), which, in isolation,exhibits 3'-5' DNA-
helicase activity (6, 8, 9). The role of IIH in 
promoter clearance is to stimulate escape of 
&scription elongation complexes stalled at 
positions +10 to +17 (10-12). Like promoter 
melting, promoter escape requires ATP (IO-
13)and is mediated by the IIH ERCC3 subunit 
(14). 

The fact that promoter melting involves 
generation of single-stranded DNA (ssDNA) 
and that promoter escape involves a species 
containing ssDNA, together with the fact that 
the IIH subunit that mediates these processes 
exhibits DNA-helicase activity, has led to the 
proposal that IIH bctions .in these processes 
through a conventional DNA-helicase mecha-
nism, with direct interactions between IIH and 
ssDNA (1-3,15). However, no direct evidence 
has been obtained in support of this proposal. 

As a f i t  step to understand the mechanism 
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of action of IIH in promoter melting and pro-
moter escape, we have used systematic site-
specificprotein-DNA photo-aoss-linking (16-
18) to define the location of IM relative to 
promoter DNA in transcription initiation com-
plexes. In published work, we have used site-
specific protein-DNA photo-cross-linking to 
analyze a transcription-complex intermediate 
containing human RNAPII, TATA-bindingpro-
tein (TBP), transcription factor IIB,transcription 
factor IIF, and promoter DNA (18). In this 
report, we extended this analysis to the complex 
that also contains human transcription factors 
IIE and IIH (19). This latter complex contains 
27 distinct polypeptides, has a molecular mass 
of -2 MD, and is the minimal complex gener-
ally sufficient for transcription initiation (tran-
scriptionally competent complex, TCC) (I). 

Pilot experiments indicated that formation 
of the TCC was accompanied by substantial 
formation of nonproductive and nonspecific 
complexes, with only a small minority (-5%) 
of complexes being competent for CTD phos-
phorylation and transcription (Fig. ID). To 
eliminaie complications due to formation of 
nonproductive and nonspecific complexes, we 
formed complexes on immobilized promoter 
DNA fiagments (20,21), washed immobilized 
complexes with Sarkosyl to remove nonpro-
ductive and nonspecific complexes (21-23), 
and performed cross-linking by ultraviolet 
(UV) irradiation of immobilized, washed com-
plexes in situ (21). Control experiments estab-
lished that this procedure results in substantial 
increases in the proportion of complexes com-
petent for CTD phosphorylation and transcrip-
tion (Fig. ID) (24). 

We constructed and analyzed 68 site-spe-
cifically derivatized DNA fragments, each 
containing a phenyl-azide photoactivatible 
cross-linking agent at a single, defined phos-
phate of the adenovirus major late promoter 
(positions -43 to +25; Fig. 2) (20, 25). Data 
for the TCC in the absence of ATP-i.e., 
under conditions in which the promoter is 
unrnelted (1-5, 26)--are presented in Figs. 
1A [representative data, see also (27)] and 
2A (summary of data). Together with data for 
the transcription-complex intermediate ana-
lyzed previously (18, 28), the data permit 
three main conclusions: 

1) Entry of IIE and W into the complex 
does not substantially alter protein-DNA inter-
actionsby RNAPII, TBP, IIB, and IIF(Fig. 2A, 
black and blue bars) (18, 28, 29). We conclude 
that IIE and W "slot" into the complex without 
substantiallyaltering the conformations and in-
teractions of RNAPII, other general transcrip-
tion factors, and DNA. 

2) IIE makes extensive interactions with 
promoter DNA (Fig. 2A; green bars). Inter-
actions are made both by the IIEP subunit 
(15, 30) and the IIEa subunit (31). IIE inter-
acts with DNA in and immediately down-
stream of the transcription-bubble region. 

3) W makes extensive interactions with 
promoter DNA (Fig. 2A; red bars). Interactions 
with the region of the promoter analyzed are 
made by only one of the nine subunits of W: 
i.e., ERCC3, the subunit that exhibits 3'-5' 
DNA-helicase activity and that mediates pro-
moter melting and promoter escape (6-9, 14, 
32). W interactswith DNA exclusively down-
stream of the transcription-bubble region (posi-
tions +3 to at least +25) (33). Interaction of 
W with DNA downstream of the transcription-
bubble region is consistentwith the observation 
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that additionof a protein fraction containing IIE 
and W to the RNAPII-TBP-IIB-IIF-promoter 
complex results in protection of the +20 to 
+30 region (fraction "CBB") (34). Projected 
onto a B form DNA helix, positions at which 
IIH-DNA cross-linking occurs flank two major 
grooves and two minor grooves and map to a 
single face of the DNA helix (27). This face of 
the DNA helix is offset by 90' and -90' 
relative to the faces at which cross-linking 
occurs to the RPBl and RPB2 subunits of 
RNAPII (18), consistent with the proposal that 

Fig. 2. Summary of photo-cross-linking results (results for nontemplate strand above sequence; 
resultsfor template strand beneath sequence). Phosphatesanalyzedare indicated by asterisks. Sites 
exhibiting cross-linkingto RNAPII,TBPIIIBIIIF, IIE, and IIH are indicated by black, blue, green, and red 
bars, respectively (with sites exhibiting reproducible cross-linking indicated by solid bars and sites 
exhibiting less reproduciblecross-linking indicated by open bars). The TATA element and transcrip-
tion start are indicated by shading; the transcriptionibubble region (positions -9 to +2) (4, 5) is 
indicated by a rectangie. (A) Results for TCC in the absence of ATP (unphosphorylated CTD, 
unmelted promoter). (B) Results for TCC in the presence of ATP (phosphorylated CTD, melted 
promoter), with differences from (A) highlighted in yellow. 
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W "slots" into the transcription complex, in- 
teracting with determinants of DNA not con- 
tacted by other components of the complex. 

Our finding that W makes no direct inter- 
actions with the transcription-bubble region in 
the TCC in the absence of ATP (Fig. 2A) 
argues against the proposal that IIH functions in 
promoter melting through a conventional 
DNA-helicase mechanism (which would in- 
voke direct interaction of IIH with the DNA 
segment to be melted, in both the double- 
stranded and single-stranded states). To deter- 
mine whether W interacts with the transcrip- 
tfon-bubble region in the TCC in the presence 
of ATP-i.e., under conditions in which the 
transcription bubble is single stranded (1-5, 
26)-we canied out a complete parallel cross- 
linking analysis of the TCC in the presence of 
ATP (representative data in Fig. lA, summary 
of data in Fig. 2B) (27,35). Comparison of the 
data for the TCC in the absence and presence of 
ATP (differences highlighted in yellow in Fig. 
2B) permits four main conclusions: 

R E P O R T S  

1) Addition of ATP results in apparently 
quantitative CTD phosphorylation, detected 
by a decrease in the electrophoretic mobility 
of cross-linked RPBl (Fig. 1A and Fig. 2B, 
yellow). 

2) Addition of ATP does not alter protein- 
DNA interactions upstream of the transcrip- 
tion-bubble region, indicating that ATP does 
not induce reorganization of the upstream 
portion of the TCC. 

3) Addition of ATP induces changes in 
protein-DNA interactions in the transcription- 
bubble region. A new cross-link to the RPB2 
subunit of RNAPII appears at position -2 of 
the nontemplate DNA strand, and quantitative 
changes in cross-linking to RPB2 and IIE occur 
on both DNA strands (Figs. 1A and 2B). Par- 
allel experiments with guanosine triphosphate 
(GTP) and A m S ,  which support CTD phos- 
phorylation, but not promoter melting (5, 36- 
39), indicate that these changes are due exclu- 
sively to promoter melting (Fig. lA, fourth 
panel, and Fig. 1B). 

A 
PROMOTER MELllNG 

B 
PROMOTER ESCAPE 

u u 
NOI(UTEY0ABLE MEYOAWE 

TRWaCIPTKII BUBBLE TRAWBOWTlOY BUBBLE 

Fig. 3. Models. (A) Promoter melting. In the presence of ATP, the IIH ERCC3 subunit rotates the DNA 
segment downstream of the transcription-bubble region relative to rotationally fixed upstream inter- 
actions, inducing melting of the transcription-bubble region. RNAPll is in dark blue, with the positions 
of the RNAPll RPBI, RPBZ, and RPBS subunits indicated; TBP, IIB, and IIF are in light blue; and IIH ERCC3 
is indicated by an open red rectangle. Promoter DNA is drawn with upstream DNA at left, transcription- 
bubble region at center, and downstream DNA at right; the DNA segment contacted by the IIH ERCC3 
is in red. ATP-dependent changes are highlighted in yellow. ADP, adenosine diphosphate; p, inorganic 
phosphate. (B) Promoter escape. IIH function in promoter escape involves stimulating escape by 
transcription elongation complexes stalled after synthesis of 10 to 17 nt of RNA (70-72). IIH 
translocates with RNAPll during synthesis of the first 10 to 17 nt  of RNA (23), and thus ERCC3 interacts 
with the DNA segment downstream of the transcription bubble in the stalled elongation complex [e.g., 
positions + I 6  to  +42 for an elongation complex stalled at + I 3  (44); left]. In the presence of ATP, 
ERCC3 rotates the DNA segment downstream of the transcription bubble relative to the rotationally 
fixed upstream interactions, facilitating downstream extension of the transcription bubble andlor 
stabilization of the transcription bubble (right). 

4) Addition of ATP induces changes in IIH- 
DNA interactions downstram of the transcrip- 
tion-bubble region. IIH-DNA interactions are 
made exclusively by the ERCC3 subunit of IM, 
occur exclusively downstream of the transcrip- 
tion-bubble region, and are made exclusively 
with doublestranded DNA (dsDNA), as in the 
absence of ATP (Fig. 2). The positions of IIH- 
DNA cross-links map to the same face of the 
DNA helix as in the absence of ATP (27). 
However, there are both qualitative and quanti- 
tative changes in individual IIH-DNA cross- 
links, with, in general, decreased cross-linking 
in the minor groove centered at position +lo 
and increased cross-linking in the minor groove 
centered at +20 (Figs. 1A and 2B) (27). Anal- 
ysis of nucleotide hiphosphate (NTP) specificity 
indicates that these changes, like those in the 
transcription-bubble region, are due exclusively 
to promoter melting (Fig. lA, fourth panel, and 
Fig. 1B). 

Our results establish that IIH does not 
interact with DNA in the transcription-bubble 
region-neither in the TCC with a double- 
stranded transcription-bubble region nor in 
the TCC with a single-stranded transcription- 
bubble region. Thus, our results rule out, at 
least for this promoter, the proposal that IIH 
functions in promoter melting through a con- 
ventional DNA-helicase mechanism. 

Our finding that the ERCC3 subunit of 
IIH interacts with the DNA segment down- 
stream of the transcription-bubble region, to- 
gether with our finding that addition of ATP 
does not alter protein-DNA interactions up- 
stream of the transcription bubble, but does 
alter protein-DNA interactions in and down- 
stream of the transcription bubble, suggests a 
specific alternative model for IIH function in 
promoter melting (Fig. 3A). 

According to the model, in the TCC in the 
absence of ATP, sequencespecific protein- 
DNA interactions by TBP (40,41), IIB (42), and 
possibly IIF rotationally fix promoter DNA up- 
stream of the transcription-bubble region; the 
RPB1, RPB2, and RPBS subunits of RNAPII 
encompass, bqt do not rotationally fix, the DNA 
segment downstream of the transcription-bubble 
region; and the ERCC3 subunit of IIH interacts 
with this same DNA segment, interacting with a 
face of the DNA helix left accessible by RPB1, 
RPB2, and RPBS (Fig. 2A and Fig. 3A, left 
panel) (27). Upon addition of ATP, ERCC3 
rotates the DNA segment downstream of the 
transcription-bubble region by about one turn 
relative to the fixed upstream interactions, in- 
ducing melting of about one turn of DNA be- 
tween ERCC3 and the fixed upstream interao 
tions and yielding a single-stranded transcription 
bubble (Fig. 3A, right panel). 

In this model, ERCC3 acts as a molecular 
"wrench," interacting with the downstream 
DNA segment to generate torque that nucleates 
formation of the transcription bubble, facilitates 
downstream extension of the transcription bub- 
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ble, and/or stabilizes the transcription bubble. 
The presence of RPB1, RPB2, and RPB5 on 
adjacent faces of the downstream DNA seg­
ment presumably would preclude ERCC3 from 
rotating by one full turn in a single step (Fig. 
3A, right panel). Therefore, we envision that 
ERCC3 acts as a "ratchet wrench," effecting 
rotation by one full turn in multiple smaller 
increments. 

An important aspect of the model is that it 
suggests a possible common mechanism for IIH 
function in promoter melting and promoter es­
cape—with IIH functioning in each case by 
rotating the DNA segment downstream of the 
transcription bubble relative to rotationally fixed 
upstream interactions (Fig. 3, A and B). IIH 
function in promoter escape has been shown to 
require a DNA segment downstream of the tran­
scription bubble [a DNA segment including the 
+40 region for a transcription elongation com­
plex stalled after synthesis of 10 to 12 nucleo­
tides (nt) of RNA] (43). We suggest that this 
DNA segment corresponds to the determinant 
for binding of ERCC3 (Fig. 3B) (44). 
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