A High-Affinity Iron Permease Essential for *Candida albicans* Virulence

Narendrakumar Ramanan and Yue Wang*

Microbial pathogens must compete with the iron-withholding defense systems of their host to acquire this essential nutrient. Here, two high-affinity iron permease genes, *CaFTR1* and *CaFTR2*, were isolated. *CaFTR1* expression was induced under iron-limited conditions and repressed when iron supply was sufficient, whereas the expression of *CaFTR2* was regulated in a reversed manner. Mutants lacking *CaFTR1* but not *CaFTR2* exhibited a severe growth defect in iron-deficient medium and were unable to establish systemic infection in mice. Thus, CaFTR1-mediated iron-uptake mechanism constitutes a virulence factor of *Candida albicans* and may be a target for the development of anti-*Candida* therapies.

Candida albicans is the cause of most fungal infections in immunocompromised patients, and systemic candidiasis may have fatal consequences (1). Pathogenicity of C. albicans has been attributed to several factors that enable the pathogen to damage and penetrate tissues, to escape host immune systems, and to establish systemic infection (2-4). However, little is known about how C. albicans acquires certain essential nutrients that are highly limiting in the host. One such nutrient is iron, which functions as an obligate cofactor of enzymes in many biological processes, such as DNA replication and electron transport (5). Mammals have developed an elaborate iron-withholding defense system against microbial infections, which collectively create an environment with virtually no free iron (6-8). Possession of specialized iron-uptake systems is intimately related to virulence of bacterial pathogens, such as Haemophilus, Neisseria, and Yersinia (9-11).

To study iron transport in *C. albicans* and its relevance to pathogenesis, we screened a subtracted cDNA library (*12*) for genes differentially expressed in cells grown in an iron-limited medium and investigated their importance for virulence in mice. We isolated two related genes, *CaFTR1* and *CaFTR2*, which are homologous to the high-affinity iron permease gene *FTR1* of *Saccharomyces cerevisiae* (*13*). *CaFTR1* and *CaFTR2* encode two proteins consisting of 381 and 382 amino acids, respectively, sharing 83% identity with each other and ~54% identity with FTR1. CaFTR1 and CaFTR2 contain multiple putative transmembrane domains and potential iron binding sites at positions similar to those in FTR1 (14).

We first used Northern blot analysis to examine CaFTR1 and CaFTR2 expression in response to iron concentration change in the C. albicans strain SC5314 (15). A CaFTR1-specific probe detected a transcript of ~ 1.66 kilobases (kb), and a CaFTR2-specific probe detected one of \sim 1.4 kb (Fig. 1A). Both transcripts are sufficiently large to encode the proteins. Expression of the two genes was distinctly regulated. The highest amount of CaFTR1 transcript was detected in cells grown in LIM1, and the amount decreased with the increase of iron concentration and was hardly detectable in cells grown in LIM1000 (12). The response of CaFTR2 transcript level was the opposite of that of CaFTR1 transcript, exhibiting the highest transcription level in cells grown in LIM1000 and a negligible level in cells grown in LIM1. From this differential regulation of the two genes, we would predict CaFTR1 to be a major iron permease used by C. albicans to grow in iron-deficient environments.

To determine whether CaFTR1 and CaFTR2 were functionally equivalent to FTR1, we tested whether they could rescue the iron-dependent growth defect of a S. cerevisiae ftr1 strain (16). CaFTR1 and CaFTR2 were expressed from an S. cerevisiae centromeric vector under the control of a galactose-inducible promoter. The ftr1 cells transformed with either CaFTR1 or CaFTR2 exhibited little growth on the lowiron plate containing glucose in contrast to the considerable growth on the plate containing galactose (Fig. 1B). Transformants carrying the vector alone could not grow on the low-iron plate even in the presence of galactose. All transformants grew equally well on the iron-sufficient plates containing either glucose or galactose, that is, under conditions in which the low-affinity iron transporter functions (17). We also determined ⁵⁹Fe uptake by these transformants (18). The ftr1 cells transformed with the vector exhibited no intracellular iron accumulation when ⁵⁹FeCl₃ was supplied at 2 µM, a concentration in which only highaffinity permeases are active [(17) and Fig. 1C]. Introduction of either CaFTR1 or CaFTR2 restored the iron uptake to ~ 30 and 60% of the amount exhibited by the wild-type cells. Previous studies showed that FTR1 function requires interaction with a ferrous oxidase FET3 (13). Heterologous expression of the Schizosacchacromyces pombe iron permease gene FIP1 alone in an S. cerevisiae ftr1 mutant could not correct the iron uptake defect (19). Our result suggests that the two C. albicans permeases may be able to interact with FET3 to constitute a partially functional iron transporter. This possibility is supported by the much higher identity in amino acid sequence between CaFTR and FTR1 $(\sim 54\%)$ than between FIP1 and FTR1 $(\sim 43\%)$. We also observed that the *ftr1* mutants transformed with either CaFTR1 or CaFTR2 exhibited no increased iron uptake, when the culture medium contained 1 mM FeCl₃ (20), a concentration that would repress FET3 expression (19).

To elucidate the respective roles of CaFTR1 and CaFTR2, we constructed genedeletion mutants for CaFTR1 or CaFTR2 or both genes from the C. albicans strain CA14 (14). In the process of deleting the CaFTR1 gene, we consistently found three copies of the gene in the genome, concluding that that is likely the natural status of the gene. We first evaluated the growth of all the Caftr strains in iron-limiting medium. The wild-type SC5314 and all the Ura3⁺ Caftr strains (containing one CaURA3 copy at the gene disruption locus) were first grown in SD200 to saturation and then diluted to 1 imes10⁴ cells/ml in LIM0. Caftr1, Caftr2, and Caftr1 Caftr2 strains were able to grow at a rate similar to that of SC5314 to near saturation in this iron-deprived medium. However, when each culture, after reaching saturation, was diluted again to 1×10^4 cells/ ml in LIM2 and LIM200, Caftr1 and Caftr1 Caftr2 strains failed to grow in LIM2 but grew as well as SC5314 in LIM200 (Fig. 2A). The Caftr2 strain grew normally in both media. Other researchers have also demonstrated the necessity of multiple passages of yeast cells in iron-deprived medium for the manifestation of growth inhibition (21, 22), presumably because the cells must first exhaust the intracellular iron stores accumulated during growth in iron-sufficient media. Reintroduction of CaFTR1 on a C. albicans autonomous-replicating plasmid pABSK1 (23) into Caftr1 and Caftr1 Caftr2

Microbial Collection and Screening Laboratory, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609.

^{*}To whom correspondence should be addressed. Email: mcbwangy@imcb.nus.edu.sg

strains restored their growth in LIM2. Thus, strains lacking *CaFTR1* but not *CaFTR2* were unable to grow in the iron-limiting medium.

To determine whether the *Caftr* strains were defective in high-affinity iron uptake, we assayed ⁵⁹FeCl₃ accumulation in cells that had been grown in an iron-limited medium (Fig. 2B). Iron accumulations in the *Caftr1* and *Caftr1 Caftr2* strains were reduced to near background level. In contrast, the *Caftr2* cells accumulated an amount of ⁵⁹Fe similar to that of SC5314. Reintroducing *CaFTR1* on pABSK1 into the *Caftr1* and *Caftr1 Caftr2* strains resulted in an accumulation of ⁵⁹Fe nearly twice that in SC5314 cells, likely because of the ability of the plasmid to exist in

Fig. 1. Iron-regulated expression and iron permease activity of CaFTR1 and CaFTR2. (A) Ironregulated expression of CaFTR1 and CaFTR2 in C. albicans. (B) Correction of iron-dependent growth defect of S. cerevisiae ftr1 mutant by CaFTR1 and CaFTR2. S. cerevisiae ftr1 mutant was transformed with a vector expressing either CaFTR1 or CaFTR2 under the control of Gal1-10 promoter or the vector alone. Multiple transformants were picked and patched onto low- (SD50) and high-iron (SD350) plates containing either glucose or galactose. The plates were incubated for 4 days at 30°C. (C) Highaffinity iron uptake. Wild-type (WT) and ftr1 strains transformed with CaFTR1, or CaFTR2, or the vector (three clones each) were examined for high-affinity iron uptake.

multiple copies. Introducing the plasmid without the *CaFTR1* gene had no effect. Thus, CaFTR1 was responsible for nearly all of the high-affinity iron-uptake activity in the cells grown under iron-limiting conditions.

The *CaFTR1* gene was essential for *C. albicans* to grow in an iron-deficient medium. Was it also required for *C. albicans* to grow in vivo? We inoculated mice with various *Caftr* mutants to examine their lethality and colonization of kidneys. Again, the Ura3⁺ strains were used because Ura3⁻ strains have reduced virulence (24). An inoculum of 1×10^6 cells of SC5314 or the *Caftr2* strain resulted in 100% mortality within 4 days of injection (Fig. 2C). In contrast, all of the animals inoculated with *Caftr1* or

Caftr1 Caftr2 strains survived to the 42-day end point. Transformation of CaFTR1 on pABSK1 into Caftr1 or Caftr1 Caftr2 cells fully restored the lethality. The kidneys from two mice of each group were removed on day 2. Microscopic examination revealed that the kidneys from mice inoculated with strains lacking CaFTR1 appeared normal, whereas the tissues from mice injected with strains containing a functional CaFTR1 gene (or genes) showed lesions filled with both hyphal and yeast cells (Fig. 2D). The colonyforming units from animals of the former group were $1.4 \pm 0.26 \times 10^4$ (*n* = 8) per gram of kidney in contrast to $3.8 \pm 1.81 \times$ 10^6 (n = 6) from the animals of the latter group. Thus, CaFTR1 was indeed essential

Fig. 2. Phenotypes of Caftr strains. (A) Caftr1 strains fail to grow in iron-limited medium. All the strains were grown in uridine-dropout LIM2 and LIM200 media and monitored by measuring OD₆₀₀ at 1.5-hour intervals. The strains are SC5314, Caftr1, Caftr2, Caftr1 Caftr2; the Caftr1 and Caftr1 Caftr2 strains transformed with pABSK1 expressing CaFTR1 (Caftr1::CaFTR1 and Caftr1 Caftr2::CaFTR1); and the same mutants transformed with the vector pABSK1. (B) Caftr1 strain is defective in high-affinity iron uptake. The same strains used in the growth assay were subjected to the iron-uptake assay. The assay was also conducted on the Caftr1 and Caftr1 Caftr2 strains transformed with pABSK1 expressing CaFTR2 under the control of CaFTR1 promoter (Caftr1::pP1O2 and Caftr1 Caftr2::pP1O2) and on the Caftr1 strain transformed with pABSK1 expressing GFPtagged CaFTR1 (Caftr1::CaFTR1-GFP). (C) Strains lacking CaFTR1 were avirulent. Twelve mice per group were injected with early stationary-phase yeasts of a C. albicans strain (1 imes 10⁶ viable cells per mouse in 0.2 ml of phosphate-buffered saline) grown in SD200-uridine and monitored for survival over a 42-day period. (D) Strains lacking CaFTR1 did not colonize the kidney of injected mice. The kidney sections were stained with periodic acid-Schiff's stain. The photomicrographs show corresponding cortical regions. (a) A representative appearance of tissues from mice infected with the strains lacking CaFTRI; (b) a representative appearance of tissues infected with strains carrying functional CaFTR1.

for *C. albicans* to grow and to cause systemic infection in the host. Other possible iron-uptake mechanisms, if there are any, are either not sufficient for the organism to acquire iron in vivo or they function in a CaFTR1-dependent manner.

The CaFTR2 gene was not required for C. albicans to grow in iron-deficient conditions. Could CaFTR2 function as a highaffinity iron permease in C. albicans when expressed? CaFTR1 gene promoter was used to control the expression of CaFTR2 from pABSK1 (25). The Caftr1 and Caftr1 Caftr2 strains transformed with this plasmid accumulated iron in amounts comparable to that in the same mutant cells transformed with the plasmid expressing CaFTR1 (Fig. 2B, plasmid pP1O2), suggesting that CaFTR2 may function as highaffinity iron permease in C. albicans. However, its function was not required for C. albicans to grow in highly iron-limiting environments, consistent with the lack of CaFTR2 expression under similar conditions. The presence of a pair of functionally similar but differentially regulated genes suggests that these genes evolved to function in different environments. C. albicans also possesses a pair of pH-regulated genes, PHR1 and PHR2. They are maximally expressed at distinct pH and play different roles in morphogenesis (26).

The iron-transport function of CaFTR1 requires it to reside on the cell surface. To determine its cellular localization, CaFTR1 was tagged with the green fluorescent protein (GFP) at its COOH-terminus and expressed from the CaFTR1 promoter on pABSK1 (27). Caftr1 cells transformed with this plasmid exhibited high amounts of iron uptake, suggesting a functional fusion protein (Fig. 2B, Caftr1::CaFTR1-GFP). The transformants were then grown in either SD50 or SD1000 to exponential phase. Horse serum (10%) was added to a separate set of cultures to induce filamentous growth. Cells of both yeast and filamentous forms grown in SD50 were visualized to have a bright fluorescent

Fig. 3. Cell surface localization of CaFTR1. The Ura3⁻ *Caftr1* was transformed with pABSK1 expressing either a CaFTR1-GFP fusion or GFP alone. The transformants were grown in SD50 to exponential phase.

periphery (Fig. 3), consistent with localization to the plasma membrane. The cells expressing the GFP alone showed intracellular fluorescence. Cells grown in SD1000 exhibited only faint disfused background fluorescence (28).

Thus, *CaFTR1* is required for *C. albicans* to acquire iron in iron-deficient environments both in vitro and in vivo. Deletion of the *CaFTR1* gene abolished the pathogen's capacity to establish systemic infection in mice. Among all the strategies speculated to be important for *C. albicans* to acquire iron in vivo (29), *CaFTR1* appears to play a central role and represents a potential target for the development of anti-*Candida* therapies.

References and Notes

- M. J. Richards, J. R. Edwards, D. H. Culver, R. P. Gaynes, Crit. Care Med. 27, 887 (1999).
- H. J. Lo *et al.*, *Cell* **90**, 939 (1997).
 D. Sanglard, B. Hube, M. Monod, F. C. Odds, N. A.
- Gow, Infect. Immun. **65**, 3539 (1997).
- 4. C. A. Gale et al., Science 279, 1355 (1998).
- C. C. Askwith and J. Kaplan, *Trends Biochem. Sci.* 23, 135 (1998).
- 6. S. M. Vidal et al., Cell 73, 469 (1993).
- D. M. De Silva, C. C. Askwith, J. Kaplan, *Physiol. Rev.* 76, 31 (1996).
- 8. H. Gunshin et al., Nature 388, 482 (1997).
- M. K. Stevens et al., Infect. Immun. 64, 1724 (1996).
 C. N. Cornelissen et al., Mol. Microbiol. 27, 611(1998).
- A. B. Schryvers and I. Stojiljkovic, Mol. Microbiol. 32, 1117 (1999).
- 12. C. albicans cells were normally grown in YPD medium (2% yeast extract, 1% peptone, and 2% glucose) or SD medium. One liter SD contains 6.7 g yeast nitrogen base without amino acids (Difco), 0.8 g complete supplement mixture (CSM) yeast medium or CSM-ura (without uracil) (Bio101), 20 g glucose, 50 mM MES (pH 6.1) (13). Limited-iron medium (LIM) was prepared, and iron was removed as described (30, 31). To prepare SD medium containing limited or sufficient iron, SD was first treated by adding 1 mM ascorbic acid and 1 mM ferrozine. FeCl₃ was added to LIM or SD to prepare LIMx and SDx, where x is the micromolar concentration of iron. For growing Ura3- strains in SD, 50 µg/ml uridine was added. From C. albicans strain (ATCC 10259), two cultures grown in LIM2 and LIM1000 were used to construct a subtracted cDNA library to enrich genes differentially expressed in LIM2 by using the polymerase chain reaction (PCR) Select Subtracted cDNA Library kit (Clontech). Sequencing the library clones identified two overlapping cDNA of 160 and 210 base pairs (bp). The cDNA was used to probe a C. albicans lambda genomic library. Two DNA fragments of ~5.7 and 5.4 kbp, encoding CaFTR1 and CaFTR2, respectively, were isolated and sequenced using a DNA sequencer (Applied Biosystems, model 377). 13. R. Stearman, D. S. Yuan, Y. Yamaguchi-Iwai, R. D.
- Klausner, A. Dancis, Science 271, 1552 (1996).
 Web supplementary material is available to Science Online subscribers at www.sciencemag.org/feature/
- data/1047970.shl. 15. Strain SC5314 was grown in SD200 to saturation and then diluted to OD_{600} 0.05 in LIM supplemented with 1, 10, 100, and 1000 μ M FeCl₃. The cells were grown at 30°C to OD_{600} 0.8 to 1.0 for total RNA preparation by using Trizol reagent (LTI). RNA (25 μ g) was separated on a 0.22 M formaldehyde and 1.2% agarose gel, and blotted onto Hybond-N nylon membrane (Pharmacia-Amersham). The coding regions of *CaFTR1* and *CaFTR2* were PCR-amplified and ³²P-labeled as probes. Blots were washed in 0.2× standard saline citrate with 0.1% SDS for 1 hour at 65°C.

- S. cerevisiae haploid strain CRY2α (can1-100, ade2-1, his3-11, 15, leu2-3, 112, trp1-1, ura3) was used to construct the ftr1 strain (14).
- 17. D. Eide et al., J. Biol. Chem. 267, 20774 (1992).
- 18. Iron-uptake assay was done as described (17). Cells were grown in minimal medium containing galactose and 50 μ M FeCl₃ for 8 hours before the assay. {s9FeCl₃ (2 μ M) was used in a 10-minute assay at 30°C. Radioactivity was counted by a LKB Compugamma counter (model 1282), and the amount bound to the cells kept on ice was subtracted as background.
- C. Askwith and J. Kaplan, J. Biol. Chem. 272, 401 (1997).
- 20. N. Ramanan and Y. Wang, data not shown.
- E. Georgatsou and D. Alexandraki, Mol. Cell. Biol. 14, 3065 (1994).
- R. Eck, S. Hundt, A. Hartl, E. Roemer, W. Kunkel, Microbiology 145, 2415 (1999).
- 23. An ~3770-kb Cla I fragment containing CaFTR1 coding region and ~1.3 kb of both 5' and 3' flanking sequences from the genomic clone were inserted at the corresponding sites of plasmid pABSK1 (gift from H. Chibana, University of Minnesota) containing a CaURA3 gene and the multiple cloning site from pBluescript (Stratagene). The resulting pABFTR1 was transformed into the Ura3⁻ Caftr1 strain and transformants selected on SD200-uridine plates.
- 24. J. R. Kohler and G. R. Fink, Proc. Natl. Acad. Sci. U.S.A. 93, 13223 (1996).
- 25. To construct a plasmid expressing *CaFTR2*, primers 5'-tcatacgtcgattaataa-3' and 5'-gcggatcctgttaatgtttattttt-3' amplified *CaFTR1* promoter [nucleotides (nt) -1292 to -1, the first base of the start codon ATG is nt 1] from pABFTR1 with a Bam HI site added on the 3' end. The PCR fragment was cut with Cla I (nt -1287) and Bam HI and inserted between the corresponding sites in pAB5K1 to yield pP1. The *CaFTR2* coding region and 400-bp 3' flanking sequence (nt 1 to 1479) was amplified by using a high-fidelity PCR kit (Roche) from the genomic clone with Bam HI and Xba I sites on the 5' and 3' ends, respectively. This PCR fragment and pP1 were cut with Bam HI and Xba I and ligated to yield pP1O2.
- 26. W. A. Fonzi, J. Bacteriol. 181, 7070 (1999).
- 27. The CaFTR1 gene promoter and the coding region (nt -1310 to 1143) were PCR-amplified with Xho I and Xba I sites added to the 5' and 3' ends, respectively. The PCR fragment was cut with Xho I and Xba I and inserted between the corresponding sites in pABSK1 to yield pNPO1. A 700-bp fragment (nt 1147 to 1847) downstream from CaFTR1 stop codon was PCR-amplified with Xba I and Sac Il sites attached to the 5' and 3' ends, respectively. Both this PCR product and pNPO1 were digested with Xba I and Sac II and ligated to yield pNOE1. The GFP coding sequence (32) was PCR-amplified with Xba I sites attached to both ends, and fused in frame with CaFTR1 at the Xba I site in pNOE1. The plasmid was transformed into Ura3- Caftr1 cells and clones selected on SD200-uridine plates. The transformants were grown in either SD50 or SD1000 to exponential phase for fluorescence microscopy (Leica).
- 28. N. Ramanan and Y. Wang, data not shown.
- 29. D. H. Howard, Clin. Microbiol. Rev. 12, 394 (1999).
- D. Eide and L Guarente, J. Gen. Microbiol. 138, 347 (1992).
- 31. D. J. D. Nicholas, Methods Enzymol. 3, 1035 (1965).
- 32. B. P. Cormack et al., Microbiology 143, 303 (1997).
- 33. This work was supported by the Institute of Molecular and Cell Biology. We thank J. Kaplan for advice on setting up the iron-uptake assay, W. J. Hong, U. Surana, C. J. Pallen, A. E. Ting and P. Singh for critically reading the manuscript, U. Surana's and M. J. Cai's laboratories for help with yeast experiments, R. M. L. Choong for help with animal experiments, M. Balasubramanian for the use of fluorescence microscope, and W. Fonzi and D. Brown for providing *Candida* strains.

15 December 1999; accepted 13 March 2000