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A remarkable up-down asymmetry in the 
nystagrnus, together with the strong vestibular 
input to up-BT cells, appears to suggest an 
additional vestibular imbalance. The region 
where we injected muscimol contained up-BT 
neurons and no down eye movement cells. Be- 
cause up-BT neurons received excitatoly inputs 
from the anterior semicircular canals, their inac- 
tivation might be expected to result in downward 
drift of the eye due to a decreased anterior canal 
input. Instead, the eye drifted upward in a wide 
oculomotor range, suggesting increased, rather 
than decreased, signals from the anterior canal. 

What is the neural mechanism that produces 
the central vestibular imbalance of anterior canal 
dominance? Up-BT neurons probably project to 
the flocculus, which has a unique connection 
pattern with the vertical canal system. Only 
anterior canal-related vestibular nucleus neu- 
rons receive floccular Inhibition (12). Therefore, 
inactivation of the up-BT neurons may reduce 
the activity of Purkinje cells, leading to disinhi- 
bition of vestibular neurons that receive inputs 
from the anterior canal. These vestibular neu- 
rons then exhibit increased discharge. The ante- 
rior canal input to the brainstem circuitry is 
increased whle the posterior canal input re-
mains unchanged. This idea is supported by a 
similar downbeat nystagmus after floccular le- 
sions (1). This experiment thus suggests that the 
PMT-flocculus-vestibular nucleus pathway is 
important in maintaining vestibular balance. It 
should be noted, however, that the asymmetry 
of nystagmus we observed does not necessarily 
indicate an imbalance of vestibular inputs to the 
neural integrator. The PMT-flocculu~ pathway 
may be involved in an intrinsic mechanism of 
the integrator that sets the neutral eye position. 

It is known that the cerebellum is necessary 
for normal operation of the brainstem neural 
integrators (1, 3, 4). The cerebellum must ac- 
quire oculomotor signals from the brainstem. 
This study suggests that our up-BT neurons 
relay eye position information to the flocculus. 
Furthermore, the effect of inactivation of up-BT 
cells indicates their importance in the oculomo- 
tor integration. The caudal pontine PMT area 
may be a new component of the neural integra- 
tion system for vertical, and perhaps horizontal, 
eye movement, along with the midbrain inter- 
stitial nucleus of Cajal, vestibular nuclei, and 
nucleus prepositus hypoglossi. 
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Light signals perceived by the phytochrome family of sensory photoreceptors 
are transduced to photoresponsive genes by an unknown mechanism. Here, we 
show that the basic helix-loop-helix transcription factor PIF3 binds specifically 
to a G-box DNA-sequence motif present in various light-regulated gene pro- 
moters, and that phytochrome B binds reversibly to C-box-bound PIF3 spe- 
cifically upon light-triggered conversion of the photoreceptor to its biologically 
active conformer. We suggest that the phytochromes may function as integral 
light-switchable components of transcriptional regulator complexes, permit- 
ting continuous and immediate sensing of changes in this environmental signal 
directly at target gene promoters. 

Plants use a set of sensory photoreceptors to Arabidopsis, track the red (R) and far red (FR) 
monitor the environment for informational light light wavelengths by virtue of their capacity for 
signals (1). The phytochrome (phy) family, photoinduced, reversible switching between 
comprising five members (phyA to phyE) in two conformers: the R-absorbing, biologically 

inactive Pr form and the FR-absorbing, biolog- 
ically active Pfi form. Each phy molecule is a 
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plant photomorphogenesis, and promoter anal-
ysis has identified a number of cis-acting light-
responsive elements (LREs) and some cognate 
DNA-binding proteins involved in regulating 
expression (3). 

Considerable progress has been made in 
recent times toward identifying molecular com-
ponents potentially involved in early steps in 
the signaling pathways linking the phyto-
chromes to photoresponsive genes. Evidence 
from photoreceptor mutants in Arabidopsis in-
dicatesthat individual members of the phy fam-
ily have differential photosensory andlor phys-
iological functions in controlling development 
(4-7), and genetic screens have identified sev-
eral loci specific to either phyA or phyB sig-
naling pathway segments (8-13). Molecular 
cloning of two of these loci, F ' l  and SPAI, 
specific to phyA signaling, has revealed that 
they encode nuclear proteins (13, 14). Yeast 
two-hybrid screening for phytochrome-interact-
ing proteins has identified PKS1, a cytoplasmic 
protein (Is), NDPK2, a nucleoside diphosphate 
kinase (16), and PIF3, a nuclear-localizedbasic 

helix-loop-helix (bHLH) protein (17). The 
functions of PKSl and NDPK2 in phytochrome 
signaling remain to be determined. However, 
because PIF3 belongs to the bHLH superfamily 
of transcription factors (18, 19), the possibility 
of a direct signaling pathway from the photo-
receptor to target genes is suggested. This sug-
gestion is consistent with recent evidence that 
phyA and phyB are induced to translocate from 
the cytoplasm to the nucleus upon Pfr forma-
tion (20, 21). To explore this possibility, we 
examined whether PIF3 has sequence-specific 
DNA binding activity and, if so, whether phyB 
would interact with DNA-bound PIF3. 

Using a random binding site selection 
(RBSS) procedure, we identified a palindromic 
hexanucleotide DNA sequence--CACGTG, 
known as a G-box motif (3, 22-26)-as the 
core PIF3 target element (Fig. 1A). The speci-
ficity of this interaction was verified by electro-
phoretic mobility shift assay (EMSA), with the 
use of a G-box containing probe (G-wt) repre-
sentative of those selectedby RBSS (Fig. lB), 
and recombinant PIF3 synthesized in the TnT 

Fig. 1. PIF3 is a se- A 
q&nce-specific DNA-
binding proteinthat tar-
gets C-box motifs 
through its bHLH do-
main. (A) Summary of 
DNA sequencesselected 
bv random binding site 

SUMMARY OF SELECTED SEOUENCES 

E. ooli producedGST:PIF3flagprotein. 
Position -9 -8 -7 -4  -5 -4 -3 -2 -1 +1 +2 +3 +4 +5 +6 +7 +8 +9 
A 2 5 1 1 6 5 1 1 - 2 7 - - - - 11 9 3 1 1  4 4 
C 5 1 2 - 3 1 1 2 7 - 2 7 - - - 2 12 9 6 19 2 
G 15 10 12 17 17 5 - - - 27 - 27 13 6 13 - 4 9 
T 5 1 1 2 4 2  - - - - - 2 7 - 1 - 2 1 0 - 1 2  
Consensus: - - - - - C l A C A C G T G G / A - - - - -

(RBSS)- (45) 
TnT produced Hi&pIF3 protein,

with either E. coli-pro- Pwi(m 

duced CST:PIRflag pro- A 
-8 -7 8 -5 -4 -3 -2 -1 +1 +2 +3 +4 +5 +6 +7 +8 +9 
1 5 9 1 0 8  7 - 3 2 .  - - - - 9 1 5 1 1  7 4

tein (top) or TnT-ex- C 2 4 2 1 1 2 6 3 2  - 32 - - - 10 15 13 8 11 
pressedHis,:PIF3 protein 6 9 7 - . . . .9 1 0 1 3 1 3  5 - - - 32 - 32 32 11 - 8 11 6 

- 3 2 - - 2 2 - 6 1 1
(bottom) (42). The con- consensus: - - .  - C C A C G T G G - - - - -
sensus-selectedC-box is 
indicated in bold type. 
(B) Upper-strand nucle- msst a-wt
Otide sequences of the ggCCGAGGTGAGTAGGACLCa1MCACACGTCTTCCGAA--

RBSS: 0-mutprobes used for the ex- ggCCGA,TGAGTAGGACA~ACACGTCTTCCGAA--

oeriments in ICland fD1. 

highlighted in tkld type. G-v.4 G-mut cold cornpetnor 
" G-t+l G-mut mldcompetrior 

C-wt was seleded by - + +A+ - A+ +  - G bhPlF3 
RBSS. C-mut contains a - + -+- PIF3 k H g + .-. . . . . PIF3 I T ] 

pointmutationinthe C-
box sequence (under-
lined). The nucleotides 
added for probe labeling 
are indicated in lower-
case. (C and Dl Se-
quence specificity of 
PlF3 DNA-bindingactiv-
ity determined by com-

4FP
petitive EMSh (C) PIF3 , ,,,,,:,,
bindingTo labeled C-wt 
probe7s competed specifically by cold C-wt but not by cold C-mut. A nonspecificcomplex formed by aTnT 
component in the absence of PIF3 (*) is competed equally by C-wt and C-mut probes. Lane 1, no protein; 
lane 2, mock-translatedTnT; lanes 3 to 9, PIF3. The binding complexes were competed by the addition of 
none (lane 3), 5X (lanes 4 and 7), 25X (lanes 5 and 8), and 125X (lanes 6 and 9) molar excess of unlabeled 
C-wt (lanes 4 to 6) or C-mut (lanes 7 to 9). (D) A truncated fragment of PIF3 containing only the bHLH 
domain fused to CST (GbhPIR) bindsto the labeled C-wt probe, and this binding is also competed by cold 
C-wt, but not by cold C-mut. Lane 1, PIF3; lanes 2 to 8, GbhPIF3. The bindingcomplexeswere competed by 
the additionof none (lane 2), 5X (lanes 3 and6), 25X (lanes4and 7), and 125X (lanes5 and8) molar excess 
of unlabeledC-wt (lanes 3 to 5) or C-mut (lanes 6 to 8). Proteinsresponsiblefor the bindingcomplexes are 
indicatedschematically on the right. Cross-hatchingindicatesbHLH domain. Gray box indicatesCST protein. 
FP, free probe; (*) nonspecific bindingcomplex 

in vitro transcription-translation system. Figure 
1C shows that the low-mobility complex 
formed in the presence of the PIF3 template 
programmed TnT reaction (lane 3) was effec-
tively competed by unlabeled G-wt probe 
(lanes 4 to 6), but not an unlabeled mutant 
probe (lanes 7 to 9) containing a single T to G 
substitution in the G-box (G-mut, Fig. 1B). By 
contrast, the higher mobility complex formed 
by an endogenous TnT reaction component 
(Fig. lC, lane 2) was competed equally well 
with G-wt and G-mut unlabeled probes. The 
data show that PIF3 does indeed bind DNA, 
with target sequence specificity characteristicof 
the bHLH family, and probably as a ho-
modimer, on the basis of the known structure of 
DNA-bHLH protein complexes (27). The G-
box motif is found in a variety of light-regulat-
ed genes and has been implicated in the regu-
lation of some by functional assay (3,22-26). 
This motif is a representative of the more gFn-
era1 E-box motif, CANNTG, considered to be 
the core consensus sequence for bHLH proteins 
in nonplant systems (18, 19). The PIF3 bHLH 
domain alone is sufficient for sequence-specific 
binding to the G-box, similar to other bHLH 
proteins (Fig. 1D) (19,27). 

Full-length, chromophore-conjugated phyB 
interacts with PIF3 that is not bound to DNA 
only upon conversion to the Pfr form (28). To 
determine whether phyB would bind to PIF3 
that had formed a complex with its DNA target 
site, we performed EMSA with PIF3 and phyB 
together (Fig. 2A). Neither the PHYB apopro-
tein nor photoactive phyB in either conforrher 
interacted directly with the DNA probe (Fig. 
2B, lanes 3 to 5). Similarly, neither PHYB nor 
the phyB Pr form (RB) altered the mobility or 
abundance of the PIF3-DNA complex when 
added to that complex, indicating the absence 
of any interaction (Fig. 2B, lanes 7 and 8). By 
contrast, R irradiation of chromophore-conju-
gated phyB induced formation of a discrete, 
lower mobility complex, presumably corre-
sponding to a ternary complex between PIF3, 
phyB, and the DNA probe (Fig. 2B, lane 9). 
The data indicate, therefore, that phyB does 
indeed bind specifically to DNA-bound PIF3, 
but only upon R light-induced conversion to 
the Pfr form (PfrB). Figure 2B also shows that 
phyB does not interact with the bHLH domain 
of PIF3 (G:bhPIF3) when this isolated domain 
is bound to its target sequence (lanes 10to 13). 
The data indicate, therefore, that the conformer-
specific recognition of PIF3 by phyB requires 
molecular determinants outside the DNA-bind-
ing domain. 

To determine whether the R light-induced 
binding of phyB to DNA-bound PIF3 was re-
versible, we examined the effects of FR pulses 
given after an initial R pulse on the ternary 
complex detected by EMSA. The amount of 
R-induced complex was rapidly reduced by 
subsequent exposure to FR (Fig. 2D), indicat-
ing that the interaction triggered by Pfr forma-
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tion was rapidly reversed by reconversion to Pr. 
These data indicate that phyB recognition of 
DNA-bound PIF3 requires maintenance of the 
photoreceptor in the biologically active (Pfr) 
form. 

The G-box motif is neither present in all 
light-regulated promoters, nor is it confined to 
light-regulated genes. On the contrary, it is 
found in a broad range of plant gene promoters 
responsive to a diversity of nonlight-related 
stimuli (3, 22-26, 29, 30). Moreover, most 
studies aimed at identifying plant DNA-biding 
proteins that recognize this motif report the 
cloning of bZIP class factors rather than bHLH 
proteins (22,30). To address this apparent com- 
plexity in relation to PIF3, we examined wheth- 
er PIF3 was capable of recognizing the G-boxes 
in photoresponsive genes in the context of their 
native flanking sequences. This is pertinent be- 
cause the nucleotides flanking the core hexarner 
E-box motif have been shown to influence the 
specificity of bHLH family-member recogni- 
tion of binding sites containing this core motif 
(31, 32). Figure 3B shows that the G-box- 
containing sequences from the promoters of 
four light-regulated genes, RBCS-IA, CCAI, 
LHY, and SPAI, all interacted effectively with 
PIF3, despite deviations from the consensus 
sequence of the PIF3 binding site (Fig. 1A) at 
the positions flanking the CACGTG hexanucle- 
otide core in some cases (Fig. 3A). To deter- 
mine whether PIF3 might recognize non-G- 
box motifs in other functionally defined LREs 
in photoresponsive genes, we examined PIF3 
bgding to the GT1, Z, and GATA motifs rep- 
resenting consensus sequences from several 
light-regulated promoters (33). PIF3 exhibited 
no detectable interaction with these motifs (Fig. 
3C), further verifying the sequence-specific na- 
ture of the G-box recognition. Together the data 
indicate that PIF3 is indeed capable of se- 
quence-specific binding to the G-box-contain- 
ing promoters of a variety of light-regulated 
genes. 

To determine whether PIF3 is necessary for 
the phytochrome-regulated expression of these 
genes, we examined the effect of continuous R 
light (Rc) on their mRNA levels in wild-type 
and PIF3-antisense (17) seedlings. The rapid 
(within 1 hour) Rc-induced increase in expres- 
sion of CC41 and LHY was reduced in the 
PIF3-antisense seedlings (Fig. 4, A and B). By 
contrast, the similarly rapid increase in SPAI 
expression was unaffected in the antisense 
plants. Two more slowly induced genes also 
showed no difference in expression between 
wild-type and antisense plants. These were the 
G-box-containing gene RBCS-IA (34) and 
CHS (Fig. 4, A and B) for which there is no 
evidence of a functionally active, fully palin- 
dromic G-box in Arabidopsis (22, 35, 36). On 
the other hand, the absence of the HY5 bZIP 
protein in the hy5 null mutant (37) caused no 
reduction in the photoresponsiveness of CCAI, 
W, or SPAI, but markedly reduced the induc- 

tion of CHS (Fig. 4, C and D). Together these MYBclass proteins that have been implicated 
data suggest that there are multiple classes of inphytochrome-regulated CAB gene expression 
promoters in phytochrome-responsive genes: andlor circadian clock regulation (38-40). It is 
G-box-containing promoters that require PIF3 possible, therefore, that PIF3 represents the en- 
for responsiveness; G-box-containing promot- try point for phytochrome regulation of the 
ers that do not require PIF3 for responsiveness, plant circadian clock, as well as initiating one 
despite their capacity to bind PIF3 in vitro; and 
promoters lacking evidence of functionally ac- 
tive G-boxes that do not require PIF3 for re- 
sponsiveness, but nevertheless do require the 
bZIP factor HY5, considered to be a G-box- 
binding protein, for responsiveness. 

On the basis of this pattern of expression 
profiles, we suggest that a subclass of rapidly 
induced genes, represented by CCAl and LHY, 
may be direct targets of phytochrome regula- 
tion through binding of the photoreceptor to 
PIF3, which is in turn bound to G-box promoter 
elements. Other subclasses of phytochrome-re- 
sponsive genes apparently have alternative re- 
sponse pathways independent of PIF3. It is 

branch of the phytochrome-induced gene ex- 
pression cascade (41). 

The data presented here and elsewhere (1 7, 
20, 21, 28) suggest that the phytochromes may 
integrate into, and function as photoswitchable 
components of, transcription-regulator com- 
plexes directly at target promoter sites after 
light-induced translocation from cytoplasm to 
nucleus (Fig. 5). The function of PIF3 in this 
scheme would be to recruit phyB specifically to 
the designated promoters. Regardless of the 
biochemical basis of the ensuing signaling 
transactions between phyB and the transcrip- 
tional machinery, the data suggest that plants 
have evolved a mechanism whereby an extra- 

intriguing that CCAl and LHY encode similar cellular signal can be monitored continuously 

Fig. 2. PIF3 simulta- A 
neously binds C-box 
DNA and the active 
form of phyB (PfrB). 
(A) Design of experi- 
ments in (B). PHYB re- + fers to  full-length phy- G:~~PIFS I 

tochrome B apopro- Om I I 

tein. ~ h v B  refers to  G-'px 
photok&e phyto- 
chrome B, after chro- 
mo~hore attachment 
to PHYB, depicted by 
the small black red- 
angle (42). After coin- EMSA 
cubation of proteins 
with labeled C-wt 
probe, the samples 
were given a pulse of 
FR or R (46) and incu- 
bated on ice in the 
dark (Dk) for 2 addi- 
tional hours before 
EMSA. (B) The binding 
comple-x formed b& 
tween PIF3 and the 
C-wt probe is shifted 
in the presence of R- 
irradiated photoactive 
phyB, and this super- 
shifted complex is de- 
pendent on full-length 
PIF3. Lane 1, no pro- 
tein; lane 2, mock- 
translated TnT: lanes 

B EE a B a B u pulse 

- - +  

- 

* 
EMSA 

- .  
3, 7, and 11, 2 pl of 

- - -  
PHYB; lanes 4, 5, 8, 9, 
12, and 13, 2 pl of phyB; lanes 6 to 9, PIF3; lanes 10 to 13, G:bhPIF3. (C) Experimental design for 
(D). Either phyB alone (lanes 3 and 4) or PIF3 and phyB together (lanes 5 to  12) were incubated for 
3 hours in the dark (Dk) after being given a R and/or FR pulse, before C-box probe addition and 
EMSA. After an initial R pulse (R) (lanes 3 and 5 to 8) a FR pulse was given either immediately [R + 
FR(O)], after 1 hour [R + FR(I)], or 2 hours [R + FR(Z)] (lanes 6, 7, and 8, respectively). Conversely, 
after an initial FR pulse (FR) (lanes 4 and 9 to  12), a R pulse was given immediately [FR + R(O)], 
after 1 hour [FR + R(l)], or 2 hours [FR + R(Z)] (lanes 10, 11, and 12, respectively). (D) The 
R-induced shift in the PIFBC-wt probe binding complex caused by the presence of phyB is 
photoreversible. Lane 1, mock-translated TnT; lanes 2 and 5 to  12, PIF3; lanes 3 to 12,2 pl of phyB. 
Proteins responsible for the binding complexes are indicated to the right. FP, free probe; (*) 
nonspecific binding complex; PfrB, biologically active form of phyB, formed by R pulse. 
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Fig. 3. PIF3 binds to  A 
pro- RBCS-U. (-2511-216) m: (-230/-195) 

moter sequen- from CATGGAAT~ATCT~CACG~ATTATTCCAGCGG CCACTACAATATCKCACG~~GATC~:CGAC 

vario~ls light-regulated ,1,  SPA^: (-606/-571) genes. (A) Upper-~and TTCTAGlQTATCACnCACaTc~GACARACTGGTDO APxTCTCCACATC~CXOMACCCCCCTCGMTGG 

nudeotide sequences of - 
the probes used in the C 
EMSA experiments in (B) RBCS-1A CCA1 LHY SPA1 cold GT1 Z G GATA Co!d 4 wmpetltor 1 4 4 4 wmpelllor 
and (C). The probes con- . + + + + - + + + + + + + + + + PIF3 

.%. 
+ + + + + + + +  + PIF3 

tain G-box and sur- '- 
, . " , - = -  

rounding sequences 
from RBCS-1A (25), 
CCA 7 (38,39), W (a), 
and SPA1 (14) promot- 
en. The G-box sequence 
is highlighted in bold and 
the-co6rdinates are in I f i r l M  ~ l ~ r e r - m r - ~ i  Y m r u d  

--,- ~~ ~- ~- 

box sequences from the four light-regulated genes. Lanes 1 and 6, mo&-translated TnT; lanes 2 to 5,7 to 16, 
PIF3; lanes 3,8,11, and 14,5X molar excess of cold probe; lanes 4,9 12, and 15,25X molar excess of cold 
probe; lanes 5, 10, 13, and 16, 125X molar excess of cold probe; lanes 3 to 5, RBCS-7AIG-box cold probe; 
lanes 8 to 10, CCA11G-box cold probe; lanes 11 to 13, WIG-box cold probe; lanes 14 to 16, SPA7lG-box cold 
probe. (C) PIF3 binding to labeled G-wt probe is competed only by the LRE that contains a G-box (47). Lanes 
1 to 9, PIF3; lanes 2,4,6, and 8,25X molar excess of cold probe; lanes 3,5,7 and 9,125X molar excess of 
cold probe; lanes 2 and 3, CT1 cold probe; Lanes 4 and 5, Z cold probe, lanes 6 and 7, C cdd probe; lanes 8 
and 9, GATA cold probe (47). 

Fig. 4. The light-in- 
duced expression of 
CCAl and LHY is re- 
duced in the PIF3 Ara- 
bidopsis antisense line 
A22. (A) RNA blot 
analysis of CCA 1, LHY, 
SPA1, and CHS mRNA 
levels in the A22 line 
(17) and its corre- 
sponding wild type 
(No-0) in Rc for in- 
creasing periods (48). 
(B) Quantitative de- 
termination of the rel- 
ative levels of the 
transcripts shown in 
(A) (49). (C) RNA blot 
analysis of CCA7, LHY, 
SPA?, and CHS mRNA 
levels in a hy5 mutant 
line [hy5-1 allele (37)] 
and its corres~ondine 
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The telomerase ribonucleoprotein has a phylogenetically divergent RNA sub- 
unit, which contains a short template for telomeric DNA synthesis. To under- 
stand how telomerase RNA participates in  mechanistic aspects of telomere 
synthesis, we studied a conserved secondary structure adjacent t o  the template. 
Disruption of this structure caused DNA synthesis t o  proceed beyond the 
normal template boundary, resulting in altered telomere sequences, telomere 
shortening, and cellular growth defects. Compensatory mutations restored 
normal telomerase function. Thus, the RNA structure, rather than its sequence, 
specifies the template boundary. This study reveals a specific function for an 
RNA structure in the enzymatic action of telomerase. 

Telomerase, a ribonucleoprotein reverse tran- 
scriptase (RT), replenishes telomeric DNA that 
would otherwise be lost with each round of 
eukaryotic DNA replication (I). The telomerase 
complex contains an RNA subunit (TER), a 
catalytic RT protein (TERT), and several addi- 
tional protein components (2). Telomerase is 
activated in most human cancers, and its ectop- 
ic expression can greatly extend the life-span of 
normal human cells in culture (3). 

Telomerase RNAs are extremely divergent 
in sequence and vary in length from 146 nucle- 
otides (nt) in the ciliate Tetrahymenapavavovax 
(4) to 1544 nt in the budding yeast Candida 
albicans (5).Unlike other RTs, which perform 
extensive genome copying, telomerase copies 
only a small portion (termed the "template") of 
an intrinsic RNA moiety (6). This feature al- 
lows telomerase to synthesize onto telomeres a 
species-specific, 5- to 26-base-long repeated 
sequence (7). How telomerase specifies its tem- 
plate boundaries (where DNA synthesis ini- 
tiates and where it ends on the TER sequence) 
is not understood. 

Nontemplate regions have been previously 
shown to be required for telomerase activity (8, 
9) and ribonucleoprotein (RNP) assembly (9, 
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10). To further investigate the participation of 
telomerase RNA in the enzymatic function of 
telomerase, we searched for conserved se-
quences and structural elements in budding 
yeast telomerase RNAs. We cloned and ana- 
lyzed TER genes from four Kluyvevomyces 
species closely related to K: lactis (11). The 
mature RNAs ranged in length from 930 nt in 
K. aestuarii to 1320 nt in K. dobzhanskii. Se-
quence identity between any given pair of 
genes ranged from insignificant to about 70% 
overall identity. The computer program mfold 
(12) predicted extensive secondary structures 
for these RNA sequences, including a common 
feature shared by all five TERs: base pairing of 
the sequence immediately upstream of the tem- 
plate (pairing element B) (Fig. 1A) with a 
sequence 200 to 350 nt further upstream (pair- 
ing element A), located near the 5' end of the 
RNA. The region between the pairing elements 
(indicated by the dashed line in Fig. 1A and the 
dashed loop in Fig. 1B) was shown previously 
to be dispensable in K. lactis (9). The proximity 
of this conserved putative pairing region to 
the 5' end of the template led us to hypoth- 
esize that its function is to limit DNA svn- 
thesis, thereby defining the downstream 
boundary of the template. 

To test t h s  hypothesis, we constructed a 
series of mutations in the putative pairing re- 
gion of the K. lactis TER gene (Fig. 1, C and 
D). We replaced the wild-type TER gene in K. 
lactis with the mutant genes by a vector-shuf- 
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