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Fig. 5. Transition to the superconducting state 
for different magnetic fields applied perpendic- 
ular to the channel. The variation of the upper 
critical magnetic field H,, with temperature is 
shown in the inset (slope ;= -5 T/K). 

same type as in A3C,,. The filling of the band 
is controlled by the applied gate voltage, and 
because of the strong electron-phonon interac- 
tion in this material, the channel region be- 
comes superconducting below 11 K. 

The possibility of investigating supercon- 
ductivity as function of electron (or hole) 
density in a simple FET device opens up 
various opportunities to find superconductiv- 
ity in new classes of materials, especially 
organic semiconductors. In addition to being 
able to implement the longstanding idea of an 
ultimate field-induced switch (insulator-su- 
perconductor transformation), this technique 
also opens up new ways to substantially mod- 
ify the electronic state in molecular crystals. 
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The Archean Sulfur Cycle and 
the Early History of 
Atmospheric Oxygen 

Donald E. Canfield,* Kirsten S. Habicht, 60 Thamdrup 

The isotope record of sedimentary sulfides can help resolve the history of 
oxygen accumulation into the atmosphere. We measured sulfur isotopic frac- 
tionation during microbial sulfate reduction up t o  88OC and show how sulfate 
reduction rate influences the preservation of biological fractionations in sed- 
iments. The sedimentary sulfur isotope record suggests low concentrations of 
seawater sulfate and atmospheric oxygen in the early Archean (3.4t o  2.8 billion 
years ago). The accumulation of oxygen and sulfate began later, in the early 
Proterozoic (2.5 t o  0.54 billion years ago). 

Life has dramatically modified the surface 
chemistry of Earth. A most conspicuous ex- 
pression of this is the accumulation of oxy- 
gen, a product of oxygenic photosynthesis by 
plants and cyanobacteria, into the atmosphere 
and oceans. Atmospheric oxygen promotes 
the oxidative weathering of rocks on land, 
forming oxidized species such as iron oxides 
and soluble sulfate (1). As a result, the accu- 
mulation of sulfate into the oceans (the con- 
centration is presently 28 mM) and the for- 
mation of iron oxides during weathering on 
land are two substantial geochemical expres- 
sions of oxygen accumulation into the atmo- 
sphere (1, 2). Still, considerable controversy 
and debate surround when atmospheric oxy- 
gen first began to accumulate. In one scenar- 
io, atmospheric oxygen reached present-day 
levels by the earliest Archean 13.8 billion 
years ago (Ga)] and has persisted in high 
concentrations ever since (3). In another sce- 
nario, atmospheric oxygen first began to ac- 
cumulate much later, around 2.2 to 2.3 Ga in 
the early Proterozoic (2). Present-day levels 
may not have been reached until sometime in 
the Neoproterozoic, 0.54 to 1.0 Ga (4). 

The history of seawater sulfate concentra- 
tions is germane to differentiating between 
these two models for atmospheric oxygen 
accumulation. Low concentrations of seawa- 
ter sulfate into the early Archean would be 
consistent with, and provide evidence for, 
low early Archean concentrations of atmo- 
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spheric oxygen (5). Inferences as to the his 
tory of seawater sulfate accumulation ar 
based, primarily, on interpretations of th 
sulfur isotope record of ancient sedimentar 
sulfide minerals. This record shows sedimen 
tary sulfides between 3.4 and 2.8 Ga wit' 
isotopic compositions of 2 5  per mil (%a 

around a contemporaneous seawater sulfat 
isotopic composition [634S ( 6 ) ]of 2 to 3% 
(7). The principal feature of this record is th 
small isotope difference between seawate 
sulfate and sedimentary sulfides. 

The interpretation of this record is based o 
our understanding of the factors controlling iso 
tope fractionation during sulfate reduction b, 
sulfate-reducing bacteria. These bacteria are re 
sponsible for most of the sulfide formed i. 
modem marine sediments. There is a tendency 
for pure cultures of sulfate-reducing bacteria tc 
fractionate less as specific rates (rate per cell) o 
sulfate reduction increase (8). Increasing tern 
perature can lead to higher specific rates fo 
individual species of sulfate reducers, anc 
therefore, lower fractionations might be expecl 
ed at higher temperatures. Thus, minimally frac 
tionated early Archean sedimentary sulfide 
may have formed at rapid rates of sulfate reduc 
tion in a warm, sulfate-rich (10 to 28 mM) ocea 
(3, 9), providing support for high early Archea 
atmospheric oxygen concentrations (3, 9). 

This ocean model requires extensions o 
relations between specific rates of sulfate re 
duction, temperature, and isotope fraction 
ation beyond current observations. Thus, fo 
Desulfovibrio desulfuricans, the most studiet 
sulfate-reducing bacterium, fractionations o 
10 to 26%0 are observed at 40° to 45OC, th 
upper temperature limit for the survival of th 
organism, where specific rates of sulfate reduc 
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tion are also the highest (8). These fraction-
ations are too large to explain the small frac-
tionations preserved in the early Archean iso-
tope record (7). Therefore, we explored the 
relation between temperature and isotope frac-
tionation for natural populations of sulfate-re-
ducing bacteria metabolizing at temperatures 
>45"C. For these experiments, we used sedi-
ment collected by the deep-sea submersible 
Alvin from an active hydrothermal vent area in 
the Guayrnas Basin, Gulf of California (10). At 
the sampling location, sediment temperatures 
increased from 23°C at the sediment surface to 
100°C by 15- to 20-cm depth. Sediment was 
sectioned into depth intervals with measured in 
situ temperatures of 50" to 60°C and 70" to 
90°C. Sediment sections were subsequently in-
cubated, intact, in flow-through reactors with 
lactate, ethanol, or acetate as substrates for sul-
fate-reducingbacteria and with sulfate concen-
trations of 2, 5, and 28 mM (11). Incubations 
were conducted at temperatures within the in 
situ range for each section, with organic sub-
strates supplied both in excess (nonlimiting) 
and in concentrations limiting sulfate reduction 
rate. 

We report the highest temperaturesto which 
isotope fractionation during sulfate reduction 
has been measured and see fractionationsof 13 
to 28%0,at temperatures up to 85°C (Fig. 1A) 
(12). These high fractionations were indepen-
dent of sulfate concentration between 2 and 28 
mM and were observed both when organic 
substrate was limiting in concentration, sup-
pressing microbial activity, and when it was 
nonlimiting. Specific rates of sulfate reduction 
could not be measured in these experiments, 
although the highest specific rates would be 
expected when organic matter was nonlimiting. 
Indeed, we measured the highest volume-based 
rates under these conditions (Fig. 1B). Our 
natural population fractionationresults provide 
no support for reduced fractionationsat temper-
atures above 40" to 45°C (13). 

Although we could not measure specific 
rates of sulfate reduction in our experiments, 
pure cultures of sulfate-reducingbacteria metab-
olizing between -1.7" and 80°C, includmg or-
ganisms with different temperature adaptations 
(14) (Fig. 2), show little systematicvariation in 
specific rates of sulfate reduction with temper-
ature. There appear to be upper limits on spe-
cific rates of sulfate reduction in nature, and 
these limits should constrain the extent to which 
high specific rates can limit isotope fraction-
ation. Thus, although correlations between spe-
cific rate of sulfate reduction, temperature, and 
fractionation might hold for individual organ-
isms (15), these correlations cannot be projected 
beyond the temperature range of the organism. 

High rates of sedimentary sulfate reduction 
(rate per volume of sediment) are a key feature 
of the warm, sulfate-rich, early Archean ocean 
model, resulting in complete sulfate depletion 
near the sediment-water interface and produc-
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Fig. 1. (A) Isotope frac- 30 
tionation is shown dur-
ing sulfate reduction by S 
mixed populations of E 25 
sulfate-reducing bac-
teria metabolizing on 8 20 
ethanol, lactate, and ac- c 

0etate, under both limit- -3 15 
ing and nonlimiting sub- 2 
strate conditions with g
artificial seawater con- o 
taining 2, 5, and 28 mM !! 
sulfate. Under limiting 
substrate conditions, all, 
or nearly all, of the sub- o 
strate was used within 40 50 60 70 80 90 
the flow-through reac-
tor. Under nonlimiting 175 

conditions, only a por-
tion of the substrate was 3 150 

used, and considerable ? 
excess substrate exited k 125 

the reactor. Isotope frac- '= 9 o E 100
tionation was calculated a o 
relative to  the isotopic u, 75 
compositionof the input '2 
sulfate, with a small cor- 5 
rection for sulfate deple- = 5 
tion within the reactor 5 25
with a Rayleigh distilla-
tion model No system- 0
atic differences in frac- 40 50 60 70 80 90 
tionation were observed 
between the substrates Temperature ("C) 
used or with sulfate be-
tween 2 and 28 mM, and, therefore, these data have not been indicated separately [data are available at 
Science Online (29)].(B) Rates of sulfate reduction within the flow-through reactors are shown. Rates were 
measured with both Limiting and nonlimiting substrate and are shown separately. 

o Mesophile 

Thermophile 

Hypertherrnophile 

-Q10 = 3 

Temperature ( O C )  

Fig. 2. Specific rates of sulfate reduction (rate per cell) are compiled here for a wide range of 
sulfate-reducing bacteria with different temperature adaptations (14). Specific rates were binned 
into 5°C intervals. Vertical lines indicate the full range of measured rates, and the average rate is 
provided by the symbol. Experiments reporting specific rates were conducted under both optimal 
and suboptimal conditions for bacterial growth. Therefore, the range of specific rates encountered 
here may reasonably reflect the range of specific rates that might be encountered in nature. Data 
come from (8, 30, 31). The specific rates reported at  80°C were determined in chemostat 
experiments on the Archaeal sulfate reducer Archaeoglobus fulgidus as part of this study. Shown 
for comparison is the increase in  specific rates predicted i f  organisms responded across different 
temperature adaptations with a Q,, = 3, a value typical for sulfate-reducing bacteria (74). 
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ing a sediment closed to sulfate exchange (3,9). 
A closed system could explain the generally 
small 2 to 3%0 differences between the average 
isotopic composition of sulfides, and of con- 
temporaneous seawater sulfate, in early Arche- 
an sediments (16). We used a difision-reac- 
tion diagenetic model to explore the relation 
between sulfate reduction rates and sulfate de- 
pletion in an hypothetical early Archean sedi- 
ment. We assumed a flux of metabolizable 
organic carbon (0.5 mmol cm-2 year-') and 
sediment deposition rate (0.1 cm yearp1) com- 
parable to active modem shelf sediments (1 7) 
and a sulfate concentration of 28 mM, the same 
as today. The model (18) was started with 
sulfate reduction rates comparable to active 
modem shelf sediments and produced a sulfate 
profile also similar to modem shelf sediments 
(Fig. 3A). With increasing rates of sulfate re- 
duction, more rapid depletion of organic matter 
occurs near the sediment surface and, conse- 
quently, leads to more vigorous near-surface 
sulfate consumption (Fig. 3, B and C). The 
result is less active sulfate reduction and mini- 
mal sulfate depletion deeper in the sediment. 

The organic carbon flux was doubled, re- 
taining the high intrinsic organic matter reactiv- 
ity in Fig. 3C, and still, even with these higher 
sulfate reduction rates (Fig. 3D) (19), only lim- 
ited sulfate depletion was observed. The highest 
rates of sulfate reduction explored here (30 mol 
literp' yearp'; Fig. 3D) are higher than any 
modem measurements and are comparable to 

proposed early Archean rates (10 to 100 mol 
literp' year-') (3,9). We show here, however, 
that such high rates are associated with rapid 
organic matter consumption and, therefore, at- 
tenuate quickly with sediment depth. Impor- 
tantly, and counter to predictions, increasing 
rates of sulfate reduction do not result in closed- 
system behavior. 

Overall, rapid rates of sulfate reduction, 
with abundant sulfate and at elevated temper- 
atures up to 85OC, should produce sedimen- 
tary sulfides depleted in 34S by about 13 to 
28%0 compared with seawater sulfate. We 
have previously shown that modem microbial 
mats, supporting very high rates of sulfate 
reduction (up to 15 mol liter-' yearp'), pro- 
duce sulfide depleted in 34S by 20 to 40%0 at 
temperatures from 10" to 30°C (20). These 
high fractionations are preserved as pyrite in 
the mats (21). Therefore, at high and low 
temperatures, high fractionations are expect- 
ed during sulfate reduction with abundant 
sulfate. The minimally fractionated early Ar- 
chean sedimentary sulfides are most consis- 
tent with either sulfate reduction at low sul- 
fate concentrations of <1 mM (22), where 
isotope fractionation during sulfate reduction 
is greatly reduced (23), or a nonbiogenic source 
of sulfide, if sulfate-reducing bacteria had not 
yet evolved. As sulfate-reducing bacteria likely 
evolved before cyanobacteria (24), a low oxy- 
gen atmosphere is consistent with both of these 
scenarios. 

....--Sulfate concentration (rnmol I-') 

-Sulfate reduction rate (mol I-' y-') 

Fig. 3. Modeled depth distributions of sulfate reduction rate and sulfate concentration are shown for a 
hypothetical early Archean sediment. In the first three cases (A to  C), the same flux of metabolizable 
carbon (0.5 mmol cm-' year-') to  the sediment surface is used, comparable to  active modern shelf 
sediments (see text). This flux of organic carbon is equivalent to  a reactive carbon concentration of 10 
weight % (wt %) (about 25% organic matter) at the sediment deposition rate (0.1 cm year-l) used in 
our calculations. Rates of sulfate reduction are increased (A to  C) in one order of magnitude steps by 
increasing the reactivity of the organic carbon decomposing [the value of the rate constant ki (18)].For 
(A), kl = 0.1 yearp' and k, = 0,001 year-l; for (B),kl = 1.0 year-' and k, = 0.01 yearp'; and for (C), 
k, = 10 year-' and k, = 0.1 year-'. In the final case (D), the flux of metabolizable carbon (and 
concentration of reactive carbon; 20 wt %) is doubled from the other three examples, whereas the same 
high rate constants used in case (C) are retained. The insets provide an expanded view of the upper 
portions of the sediment column. 

By 2.75 Ga, sedimentary sulfides with 634S 
values as low as -18%0 are found (25, 26). 
Although some of these sulfides are volcano- 
genic (25), in other instances, a bacteriagenic 
source is possible (26). By 2.75 Ga, therefore, 
sulfate reduction may have been well estab- 
lished, but only locally expressed [probably in 
restricted sulfate-rich environments (25)], as 
evidenced by the general lack of 34S-depleted 
sulfides in organic matter-containing shales of 
this age (25). By 2.2 to 2.3 Ga, 34S-depleted 
sulfides of certain biological origin and reflect- 
ing generally abundant seawater sulfate concen- 
trations of 1 mM or greater become a continu- 
ous feature of the geologic record (7, 27). In- 
dependent lines of geochemical evidence point 
to the first accumulation of oxygen into the 
atmosphere around this time (2). 

Organic biomarker (28) and organic car- 
bon stable isotope evidence (7) support the 
evolution of oxygenic photosynthesis by 2.7 
Ga. There existed on Earth, therefore, a pro- 
tracted period of at least 400 to 500 million 
years, from >2.7 Ga to 2.2 to 2.3 Ga, where 
biological oxygen production resulted in little 
net oxidation of Earth's surface. It appears 
that the evolution of metabolic innovations 
such as oxygenic photosynthesis and sulfate 
reduction is separated in time from their geo- 
chemical expression. This separation in time 
complicates our attempts to pace the timing 
of metabolic evolution and underscores the 
importance of elucidating the poorly under- 
stood biogeochemical mechanisms regulating 
Earth's surface chemistry. 
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Heightened Odds of Large 

Earthquakes Near Istanbul: An 

Interaction-Based Probability 


Calculation 

Tom parsons,'* Shinji Toda,' Ross S. stein,' Aykut Barka,3 


James H. Dieterich' 


We calculate the probability of strong shaking in Istanbul, an urban center of 10 
million people, from the description of earthquakes on the North Anatolian fault 
system in the Marmara Sea during the past 500years and test the resulting catalog 
against the frequency of damage in Istanbul during the preceding millennium. 
Departing from current practice, we include the time-dependent effect of stress 
transferred by the 1999 moment magnitude M = 7.4 lzmit earthquake to faults 
nearer to Istanbul. We find a 62 1 15% probability (one standard deviation) of 
strong shaking during the next 30 years and 32 + 12% during the next decade. 

The 17 August 1999 M = 7.4 Izmit and 12 
November 1999 M = 7.1 Diizce earthquakes 
lulled 18,000 people, destroyed 15,400 build- 
ings, and caused $10 billion to $25 billion in 
damage. But the lzmit event is only the most 
recent in a largely westward progression of - .  . -
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Tokyo, 113-0032 Japan. 31stanbul Technical Universi- 
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seven large earthquakes along the North Ana- 
tolian fault since 1939. Just northwest of the 
region strongly shaken in 1999 lies Istanbul, a 
rapidly growing city which has been heavily 
damaged by earthquakes 12 times during the 
past 15 centuries. Here, we calculate the vrob- 
gbility of future earthquake shaking in 1s&bul, 
using new concepts of earthquake interaction, 
in which the long-term renewal of stress on 
faults is perturbed by transfer of stress from 
nearby events. 

Stress triggering has been invoked to explain 
the 60-year sequence of earthquakes rupt&ng 
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