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Major histocompatibility complex class II (MHC II) molecules capture peptides 
within the endocytic pathway t o  generate T cell receptor (TCR) ligands. Im- 
mature dendritic cells (DCs) sequester intact antigens in  lysosomes, processing 
and converting antigens into peptide-MHC II complexes upon induction of DC 
maturation. The complexes then accumulate in  distinctive, nonlysosomal MHC 
I l f  vesicles that appear t o  migrate t o  the cell surface. ~ l t h o u g h  the vesicles 
exclude soluble lysosomal contents and antigen-processing machinery, many 
contain MHC I and B7 costimulatory molecules. After arrival a t  the cell surface, 
the MHC and costimulatory molecules remain clustered. Thus, transport o f  
peptide-MHC II complexes by DCs not only accomplishes transfer from late 
endocytic compartments t o  the plasma membrane, but does so in a manner that 
selectively concentrates TCR ligands and costimulatory molecules for T cell 
contact. 

A pivotal step in the initiation of T cell B lymphocytes, MHC I1 accumulates in late 
immunity is the presentation of antigenic endosomal and lysosomal compartments 
peptides by MHC products expressed on (collectively termed MIICs) together with 
DCs. In general, MHC I1 molecules bind other components required for antigen pro- 
peptides formed in endocytic organelles (1) .  cessing. These include the invariant (Ii) 
In antigen-presenting cells (APCs) such as chain that targets MHC 11 from the Golgi to 
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endocytic organelles, H-2M that helps pep- 
tides gain access to MHC 11, and proteases, 
notably cathepsin S (2). MIICs are thus 
viewed as a primary site for peptide-MHC 
I1 complex formation. It is not clear, how- 
ever, how peptide-MHC I1 complexes 
formed in lysosomes are transferred to the 
surface because lysosome-to-plasma mem- 
brane transport, although it can occur, is 
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Fig. 1. Peptide-MHC I I  com- 
~lexes accumulate in CIIVs. 
i ~ )  Immature CBAIJ DCs 
were pulsed with LPS-de- 
pleted HEL (3 mg/ml) or HEL 
(3 mg/ml) plus LPS (5 ng/ml) 
for 1 hour, gently washed, 
chased in HEL- and LPS-free 
media, and assayed every 6 
hours for HEL peptide-MHC 
I I  complexes [y axis displays 
the mean fluorescence in- 
tensity (MFI) of C4H3 reac- 
tivity] by flow cytometry. 
The x axis displays the time 
in culture after addition of 
antigen. (B) Immature I-Ak+ 
DCs treated with HEL plus 
LPS [as in (A)] were harvest- 
ed after 4 hours (left), 9 
hours (middle), or 22 hours 
of chase (right) and pro- 
cessed for ICM. Optically 
merged images display DCs 
double-labeled with anti- 
bodies specific for HEL pep- 
tide-MHC I I  complexes (up- 
per panels, green) and H-2M 
(upper panels, red) or HEL 
peptide-MHC I I  complexes 
(lower panels, green) and to- 
tal MHC l l  (lower panels, 
red). (C) Using phenotypic 
criteria established previ- 
ouslv (51. the intermediate 

inefficient in most cell types (3, 4). 
Nonlysosomal MHC II+ compartments 

termed CIIVs have also been described (5). 
CIIVs are particularly abundant in DCs that 
are at an intermediate stage of maturation (6). 
The relative finctions of MIICs and CIIVs 
have thus far been difficult to analyze direct- 
ly, particularly in the case of CIIVs, which 
are a minor population of MHC II+ structures 
in B cells and exist only transiently in DCs. 

Our recent results suggested that the for- 
mation of peptide-MHC I1 complexes in DCs 
is tightly controlled (7). In immature DCs, 
corresponding to those found in peripheral 
tissues, neither peptides nor proteins were 
converted to peptide-MHC I1 complexes un- 
til after the receipt of a maturation stimulus 
[e.g., lipopolysaccharide (LPS)]. Shortly 
thereafter, the complexes first appeared in 
lysosomal compartments and subsequently at 

nme (hr) 

Time (hr) 

the plasma membrane (7). Because DC mat- 
uration is characterized by a dramatic up- 
regulation in surface expression of MHC I1 
and costimulatory molecules required for T 
cell stimulation (6,8), we investigated wheth- 
er and how peptide-MHC complexes formed 
in lysosomes reached the cell surface. 

As in our previous study (7), we used a 
monoclonal antibody (C4H3) that detects hen 
egg lysozyme (HEL) peptide 46-61 bound to 
I-Ak to monitor the formation and fate of a 
specific peptide-MHC I1 complex (9). Expo- 
sure of immature DCs to HEL generated 
C4H3-reactive complexes only when the 
cells were also exposed to a maturation stim- 
ulus such as LPS (7). 

To determine the kinetics of peptide- 
MHC I1 coniplex formation and transport, 
immature DCs were pulsed with HEL with or 
without LPS for 1 hour, washed, and chased 

DC -frequency was deter- E 
mined at various times dur- 
ing HEL pulse-chase assays 
[as in (A)]. Data are repre- 
sentative of more than 10 
experiments. (D) The local- 3 
ization of HEL peptide-MHC 
I I  complexes was monitored 8 
by ICM in I - A ~ +  DCs cultured 
in the presence (right) or ab- 
sence (left) of LatB (0.4 pg/ ~ 4 ~ 3  
ml) with C4H3. lmmature 
DCs were pulsed with HEL (3 mg/ml) for 1 to 3 hours and washed. DCs 
were then either treated continuously with LatB for 12 to 36 hours 
(upper panels, Continuous), treated for 12 hours with LatB, and then 
recultured in the absence of drug for an additional 12 hours (middle 

C4H3 

panels, Recovery), or induced to mature with LPS. Mature DCs were 
treated with LatB for 2 hours (lower panel, Mature DCs). (E) As in (D), but 
DCs were processed for flow cytometry. C4H3 reactivity on LatB-treated 
(black) and untreated control (gray) I-E+ DCs is shown. 

www.sciencemag.org SCIENCE VOL 288 21 APRIL 2000 



R E P O R T S  

for various times (10). As expected, flow 
cytometry demonstrated that C4H3-reactive 
complexes did not appear at the plasma mem-
brane unless LPS was included with the HEL 
(Fig. 1A) (7, 11). Nevertheless, there was an 
appreciable lag (- 12 hours) before HEL pep-
tide-MHC I1 complexes were detected. Sur-
face C4H3 complexes reached a plateau at -18 hours. 

When LPS-treated DCs were examined by 
immunofluorescence confocal microscopy 
(ICM), intracellular C4H3 staining was evi: 
dent within 4 hours of chase (12). Most of the 
C4H3+ cells exhibited the immature DC phe-
notype with abundant HEL peptide-MHC I1 
complexes in H-2M+/LAMP+ lysosomal 
compartments (MIICs) (Fig. lB, upper left 
panel). C4H3 staining colocalized with total 
MHC I1 (detected with an antibody to the P 
chain of I-A) in immature DCs (Fig. lB, 
lower left panel). 

At 9 hours of chase, intracellular staining 
was abundant but C4H3-reactive HEL pep-
tide-MHC I1 complexes were localized to the 
population of nonlysosomal, peripheral vesi-

cles previously designated as CIIV (Fig. lB, 
upper middle panel) (5). Unlike MHC II+ 
structures labeled at earlier time points, CIIVs 
were negative for the lysosomal membrane 
markers LAMP and H-2M. C4H3 staining in 
CIIVs again colocalized with total MHC I1 
(Fig. lB, lower middle panel), indicating that 
these DCs were of the "intermediate" matu-
rational phenotype (6). 

After 22 hours of chase, most of the cells 
exhibited surface C4H3 staining with rela-
tively little intracellular staining (Fig. lB, 
upper right panel; total MHC I1 in lower right 
panel). Quantitation of random images from 
several experiments demonstrated that the in-
cidence of the CIIV-containing intermediate 
DCs reached a maximum at -12 hours (Fig. 
lC), just as HEL peptide-MHC I1 complexes 
began to accumulate at the plasma mem-
brane. Thus, CIIVs appeared to be inter-
mediates in the transfer of peptide-MHC I1 
complexes from lysosomes to the plasma 
membrane. 

We next screened for agents that inhibited 
CIIV transport. Depolymerization of micro-

tubules with nocodazole was without effect, 
but treatment with the actin antagonist La-
trunculin B (LatB) affected CIIV transloca-
tion and C4H3 delivery (13). 

Immature DCs were pulsed with HEL and 
LPS for 1 to 3 hours, washed, and cultured in 
the presence of 0.4 pglml LatB (13). Cultures 
treated with LatB accumulated cells with 
C4H3-reactive CIIVs relative to untreated con-
trols for as long as 12to 36 hours'of chase (Fig. 
lD, upper panels). The effect did not cause an 
appreciable decrease in total C4H3 reactivity 
(measured by intracellular staining with fluo-
rescence-activated cell sorting) and, moreover, 
it was reversible; subsequent incubation for 12 
hours in the absence of LatB resulted in the 
disappearance of CIIVs and the appearance of 
C4H3-reactive complexes on the cell surface 
(Fig. 1D, middle panels). Treatment of mature 
DCs with LatB did not cause the accumulation 
of CIIV-like vesicles (Fig. 1D, bottom panel), 
indicating that the drug did not induce endocy-
tosis of surface MHC 11. 

When the same cells were analyzed for 
surface C4H3-reactive complexes by flow 

0 24 48 60 
HEL retentiontime before maturation (hr) 

IFig. 2. CllVs acquire peptide-MHC class II complexes from MIICs. (A) 
lmmature I-Ak+ DCs were treated with IPS-depleted HEL for 1 to 6 hours 
and washed. One portion of the HEL-pulsed cells was harvested immedi-
ately (left panels). The other portion was induced to mature by reculturing 
in the presence of LPS (5 ngfml) for 3 hours (middlepanels) or 8 hours (right 
panels). Bothsets of cellswere processedfor ICM. Cellswere double-labeled 

with antibodies s ecific for H-2M (upper panels, green) and HEL protein (upper panels, red) or HEL peptide-MHC IIcomplexes (lower panels, green) 
and HEL protein lower panets, red). (8) lmmature /-Ak+ DCs were pulsed with LPS-depleted HEL (3 mglml) for I hour, washed. chased in HEL-free 
media for the time indicatedon the x axis, and then treatedwith LPS for 18 hours. Conditions include DCs treatedwith no HEL and no LPS (open bars), 
DCs pulsed with LPS-depleted HEL (black bars), or DCs pulsedwith LPS-depleted HEL and then LPS after the chase (shaded bars). DCs were processed 
for flow cytometry to quantitate surface expression of HEL peptide-MHC IIcomplexes. (C) lmmature I-Ak+ DCs were pulsed with LPS-depleted HEL 
(3 mglml) for 1 hour, washed, chased in HEL-free media for 24 hours, and then exposed to LPS for 3 hours (left), 8 hours (middle), or 22 hours (right). 
To analyze the localization of C4H3, we processed cells for ICM. Optically merged images of DCs stained for C4H3 (green) and H-2M (red). 
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cytometry, LatB treatment was found to 
cause a partial but substantial (up to 50%) 
decrease in C4H3 reactivity (Fig. lE, left 
panel) (11). A second MHC I1 product that is 
not C4H3-reactive, I-Ek, was reduced to the 
same extent, as would be expected if CIIVs 
were responsible for delivering all MHC I1 
molecules to the surface. Upon reculture in 
the absence of LatB, surface expression of 
both C4H3-reactive (I-Ak) and nonreactive 
(I-Ek) complexes were restored (Fig. lE, 
right panel). Thus, the LatB-induced decrease 
in plasma membrane MHC I1 correlatedwith 
the accumulation of CIIVs, supporting the 
possibility that CIIVs are intermediates in the 
delivery of at least a portion of the MHC I1 
complexes to the cell surface. 

We next examined whether HEL internal-
ized before, rather than concomitant with, 
LPS treatment could be used to generate 
C4H3+ complexes that would then be deliv-
ered to the cell surface. When immature DCs 
were incubated with LPS-free HEL for 1 to 6 
hours, HEL protein was found to accumulate 
in H-2M+ lysosomes (Fig. 2A, upper left 
panels). As expected (7), the immature cells 
were unable to convert the HEL protein into 
C4H3-reactive complexes (Fig. 2A, lower 
left panels). 

When the cells were then treated with LPS 
for 3 hours to initiate maturation (Fig. 2A, 
center panels), the internalized HEL protein 
remained in lysosomal structures that began 
to cluster in the perinuclear cytoplasm (upper 
center panels). However, the antigen-contain-
ing lysosomes then became strongly positive 
for the C4H3 epitope, indicating the forma-
tion of immunogenic HEL peptide-MHC I1 
complexes (lower center panels). 

Within 8 hours of the LPS pulse, HEL 
protein remained in the increasingly perinu-
clear lysosomal structures (Fig. 2A, upper 
right panels). In contrast, the C4H3-reactive 
peptide-MHC I1 complexes became largely 
segregated from the HEL and were found in 
CIIVs (lower right panels). Thus, the appear-
ance of CIIV was accompanied by the sorting 
of peptide-MHC I1 complexes from lysoso-
ma1 membrane proteins (LAMP, H-2M) and 
contents (HEL). 

DCs converted HEL into C4H3+ peptide-
MHC I1 complexes even when the HEL was 
internalized long before the receipt of a matu-
ration stimulus. Immature DCs were pulsed 
with LPS-free HEL (7,lO) for 1hour, washed, 
and then chased for up to 3 days in HELfree 
media. The cells were only then treated with 
LPS to initiate maturation. The internalized 
HEL was not converted into C4H3-reactive 
complexes for at least 60 hours unless the cells 
were treated with LPS at the end of the chase 
(Fig. 2B). Thus, immature DCs can retain pre-
viously internalized HEL for several days be-
fore converting it to immunogenic complexes. 
Even after extended chase periods, LPS treat-
ment triggered the appearance 3 to 4 hours later 
of C4H3+ HEL peptide-MHC I1 in lysosomal 
compartments (Fig. 2C, left), followed by the 
segregation of the peptide-MHC I1 into nonly-
sosomal CIIV (center), and subsequent appear-
ance on the plasma membrane in mature DCs 
(right).

Despite their differences in function, ly-
sosomal MIICs and CIIVs were similar mor-
phologically, as indicated by immunoelectron 
microscopy (IEM) (14). Immature DCs con-
tained abundant LAMP+ and MHC II+ struc-
tures (MIICs) that, as expected, displayed 

internal membrane vesicles or lamellae (15) 
(Fig. 3, A and B). Similar structures were 
observed in CIIV-containing intermediate 
DCs, except that the MHC II+ elements 
lacked the lysosomal marker LAMP-2 (Fig. 
3, C and D). The structural homology be-
tween MIICs and CIIVs suggests that CIIVs 
may arise directly from MHC II+ lysosomes. 
If true, CIIVs might form as a result of a 
sorting event that selectively includes pep-
tide-MHC I1 complexes while excluding ly-
sosomal residents. Indeed, we occasionally 
observed "hybrid" MHC II+ vesicles in 
which part of the vesicle contained LAMP-2 
and part did not (Fig. 3E). 

Regardless of the precise pathway of 
origin of CIIV, their selective accumulation 
of peptide-MHC I1 complexes suggested 
that they might include other molecules 
relevant to antigen presentation. Indeed, 
CIIVs in DCs from both mice and rats 
contained MHC I as well as the B7-2 
(CD86) costimulatory molecule. In inter-
mediate-stage DCs, MHC I and B7-2 ex-
hibited punctate intracellular staining dis-
tinct from LAMP+ lysosomes (Fig. 4A, top 
panels). In double-labeling experiments, MHC 
I colocalized extensively with MHC 11, with 
B7-2 and MHC I1 colocalizing to a somewhat 
lesser extent (Fig. 4A). That B7-2 and MHC I1 
could be found in the same structures was 
confirmed by IEM (Fig. 4B). 

In a subset of DCs that express the glyco-
sylphosphatidyl inositol-anchored protein 
Thy-1, this marker was also found in CIIVs, 
suggesting that these structures may contain 
glycosphingolipidrafts (16). CIIVs were neg-
ative, however, for LFA-1, transferrin recep-
tor, and Fc receptor (FcRyII). Thus, although 

Fig. 3. CllVs transport components for T cell activation. Immature C3Hl 
Hej DCs, pulse-labeled with HEL and LPS for 1 hour, were harvested at 
various times during antigen-free chase to  analyze MHC IIcompartments 
at each stage of maturation by IEM. Ultrathin cryosectionswere stained for 
MHC II (5-nm gold) and LAMP-2 (10-nm gold; arrows). DCs harvested at 
early time points (3 hours) exhibited abundant MHC II+/LAMP+ vesicles (A 
and B), whereas DCs harvested at intermediate time points (9 hours) 
exhibited abundant MHC II+/LAMP- vesicles (C and D). (E) A representa-
tive "hybrid" MHC It+vesicle found at intermediate time points. 
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some compositional heterogeneity was ob- 
served, CIIVs selectively accumulate T cell 
receptor (TCR) ligands (MHC I and 11) to- 
gether with at least one costimulatory mole- 
cule required for T cell activation (B7-2). 

The CIIVs were not formed by endocytosis 
of MHC I1 from the plasma membrane. When 
intermediate DCs were incubated with mono- 
clonal antibody to MHC I1 for various periods 
of time, internalized antibody accumulated in 
lysosomal vesicles distinct from the MHC II+ 
CIIVs (Fig. 4A, middle right panel). Similar 
results were obtained with markers of fluid 
endocytosis whether internalized before or after 
a maturation stimulus (1 7). Indeed, most CIIV- 
containing DCs were unable to internalize the 
antibody or other markers at all, because endo- 
cytosis is rapidly down-regulated upon receipt 
of a maturation stimulus (1 7). 

Despite the considerable degree of colocal- 
ization between MHC 11, MHC I, and B7-2 in 
CIIVs of intermediate DCs, these markers ex- 
hibited distinct distributions in immature DCs. 
Although MHC I1 molecules were found in 
LAMP+ lysosomes, both MHC I and B7-2 
exhibited a reticular, endoplasmic reticulum 
@R)-like pattern largely separate from MHC I1 
(Fig. 4A, lower panels). Conceivably, immature 

DCs retain MHC I and B7-2 in the ER, to be 
exported upon receipt of a maturation stimulus. 
Disappearance from the ER in mature cells 
correlates with a transient increase in the syn- 
thesis of both markers (18, 19). 

Late in the intermediate stage of DC de- 
velopment, MHC 11, MHC I, C4H3-reactive 
complexes, and B7-2 begin to appear at the 
cell surface. Even after amval at the plasma 
membrane, these markers continued to exhib- 
it a punctate distribution (Fig. 4C). MHC 11, 
B7-2, and peptide-MHC I1 complexes con- 
tinued to colocalize at least in part with one 
another, a distribution that persisted for long 
periods into the mature stage of DC develop- 
ment (Fig. 4C). 

Not all plasma membrane components 
were contained within the DC surface clus- 
ters. For example, in both intermediate and 
mature DCs, LFA-1 (CD18) and ICAM-1, 
not present in CIIVs, were diffisely distrib- 
uted on the plasma membrane (Fig. 4C). Ad- 
ditionally, the clustered distribution of sur- 
face MHC I1 was found on DCs but not B 
cells expressing similar concentrations of 
MHC I1 (18). The difference in MHC I1 
distribution on B cells versus DCs was also 
supported by preliminary IEM on cells first 

fixed with glutaraldehyde. Thus, clustering of 
MHC I1 on the surface of DCs seems to 
reflect a cell type-limited rather than an an- 
tibody-dependent event. 
Our results suggest that DCs use a distinc- 

tive population of nonlysosomal vesicles, 
CIIVs, to transfer peptide-MHC complexes 
from their site of formation in lysosomal com- 
partments to the cell surface. These vesicles are 
notable for their ability to selectively accumu- 
late not only peptideMHC I1 but also MHC I 
and B7-2. It is as yet unclear how CIIVs form 
or if they serve as secretory vesicles that direct- 
ly deliver their contents to the cell surface. 
Conceivably, they may communicate with the 
plasma membrane and their originating com- 
partments through as yet undetected popula- 
tions of transport vesicles. If CIIVs were to fise 
directly with the plasma membrane, however, 
they might serve as the DC equivalent of neu- 
ronal synaptic vesicles, delivering TCR ligands 
and costimulatory molecules to facilitate the 
formation of an "immunological synapse" be- 
tween the DC and T cells (20). 

The cell biological mechanisms underly- 
ing the formation and fate of CIIVs represent 
critical unknowns. DCs may regulate entry 
into CIIV not only by controlling transport of 

Fig. 4. MHC-07 clusters at the DC plasma membrane. (A) DCs were 
harvested at the immature (bottom row) and intermediate stages (top and 
middle rows) and processed for ICM or IEM (B). One set of intermediate 
DCs was fed anti-MHC II for 2 hours (middle right panel). Cells were 
stained with antibodies specific for MHC II, LAMP-2, 87, MHC I, or 
anti-MHC II or with a CTLA-4-lg fusion protein. ICM panels (A) contain 
optically merged, double-labeled DCs. The IEM panel (B) shows represen- 
tative MHC II (5-nm gold) and 87-2 (10-nm gold, arrows) labeling in A intermediate-stage DCs. (C). HEL-treated DCs were harvested late in the 
intermediate stage (10 to 12 hours after maturation induction) and processed for ICM. Cells were single-labeled for MHC II (first panel) and CD18 
(second panel) and double-labeled for total MHC II (red) and HEL-peptide MHC II complexes (third panel, green) and total MHC II (red) and 87-2 (fourth 
panel, green). 

21 APRIL 2000 VOL 288 SCIENCE www.sciencemag.org 



MHC I1 from lysosomes but also by regulat- 
ing the exit of MHC I from the ER. In 
addition, CIIVs are probably not the only 
factor responsible for the increase in surface 
MHC I1 transport upon DC maturation. For 
example, DCs regulate the post-Golgi trans- 
port of newly synthesized MHC I1 molecules 
to lysosomes versus the plasma membrane by 
controlling both cathepsin S-mediated prote- 
olysis of Ii chain and endocytosis of MHC I1 
ap dimers from the cell surface (6, 20). 
CIIVs appear to permit the recovery of MHC 
I1 synthesized before maturation and thus 
delivered to lysosomes. 

DCs are perhaps the most potent of all 
APCs, being unsurpassed in their ability to 
stimulate immunologically naive T cells (8). 
The features described here may contribute to 
their efficiency in several ways. First, the cou- 
pling of CIIV formation with the onset of DC 
maturation might explain how DCs sequester 
antigen in peripheral tissues for display to lyrn- 
phoid organs, often days later. This strategy 
would enhance immune surveillance and main- 
tenance of T cell memory. Second, the ability of 
MHC I1 and B7 molecules to cluster on the 
plasma membrane suggests that they are orga- 
nized in a polyvalent configuration that may 
help to activate a quiescent T cell. In contrast, 
the recently described ability of T cells to me- 
diate clustering of MHC and costimulatory 
molecules (20, 21) may serve to sustain rather 
than initiate an immune response. 
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On the Origin of Internal 

Structure of Word Forms 


Peter F. MacNeilagel* and Barbara 1. Davis2 

This study shows that a corpus of proto-word forms shares four sequential 
sound patterns with words of modern languages and the first words of infants. 
Three of the patterns involve intrasyllabic consonant-vowel (CV) co-occur- 
rence: labial (lip) consonants with central vowels, coronal (tongue front) con- 
sonants with front vowels, and dorsal (tongue back) consonants with back 
vowels. The fourth pattern is an intersyllabic preference for initiating words 
with a labial consonant-vowel-coronal consonant sequence (LC). The CV ef- 
fects may be primarily biomechanically motivated. The LC effect may be 
self-organizational, with multivariate causality. The findings support the hy- 
pothesis that these four patterns were basic to the origin of words. 

The most basic unit of language is the word- 
the minimal stand-alone pairing of meaning and 
sound structure. But what is the nature of this 
pairing? Apart from those few words that are 
indubitably onomatopoetic, linguists consider 
the pairing to be primarily "arbitrary" ( I t t h a t  
is, they believe that a word's conceptual struc- 
ture does not impose a particular sound structure 
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on its spoken form across languages. But if the 
conceptual structure, or meaning, of a word does 
not determine its sound vattem. what does? 
Oddly, scant attention has been paid to how the 
spoken forms of words originate. Are there de- 
termining factors inherent in the very production 
of sound structures of words, beyond their well- 
known tendency to alternate between conso-
nants and vowels, thus forming syllables (e.g., 
"to-ma-to")? We have addressed this question 
by fust looking at speech-related behavior at its 
simplest: in infants' babbling and in their fust 
words. 

We conducted statistical studies of the bab- 
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