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C O R R E L A T E DELECTRON SYSTEMS -----m 
Quantum Criticality: Competing Ground 


States in Low Dimensions 

Subir Sachdev 

Small changes in an external parameter can often lead t o  dramatic 
qualitative changes in the lowest energy quantum mechanical ground 
state of a correlated electron system. In anisotropic crystals, such as the 
high-temperature superconductors where electron motion occurs primar- 
i ly on a two-dimensional square lattice, the quantum critical point be- 
tween two  such lowest energy states has nontrivial emergent excitations 
that control the physics over a significant portion of the phase diagram. 
Nonzero temperature dynamic properties near quantum critical points are 
described, using simple theoretical models. Possible quantum phases and 
transitions in the two-dimensional electron gas on a square lattice are 
discussed. 

Quantum mechanics was originally devel- 
oped by Schrodinger and Heisenberg as a 
theory of nonrelativistic charged particles in- 
teracting via the Coulomb force, and success- 
fully applied to a simple two-particle system 
like the hydrogen atom. However, among its 
most important applications has been the de- 
scription of particles found in macro- 
scopic matter. The earliest example of this 
was the Sommerfeld-Bloch theory of elec- 
tronic motion in metals, and its refined for- 
mulation in Landau's Fermi liquid theory ( I ) .  
Although solving Schrodinger's wave equa- 
tion for interacting electrons appears an 
impossibly daunting task, Landau outlined a 
powerful strategy, involving the concept of 
"quasiparticles," which allowed an essential- 
ly exact description of the low-temperature 
(T) properties of metals. Extensions of Lan- 
dau's approach have successfully described 
many other phases of matter: the superfluid 
phases of 4He and 3He, the superconductivity 
in metals that is described by the Bardeen- 
Cooper-Schrieffer theory, and the quantum 
Hall liquid state of electrons in two dimen- 
sions in a strong magnetic field. However, in 
the last decade, attention has been lavished on 
new transition metal compounds for which no 
successful quasiparticle-like theory has yet 
emerged for much of the accessible temperature 
range. The most important among these com- 
pounds are ceramics, like YBa2Cu30,, in 
which the electronic motion occurs primarily in 
two-dimensional (2D) CuO, layers, and that 
display "high-temperature" superconductivity. 

Here, I shall describe a new approach to 
the collective dynamical properties of elec- 
trons that turns out to be especially useful in 
two dimensions: the approach focuses on the 
notion of competing ground states and its 
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implications for the dynamics of excited states 
at nonzero temperatures. Before describing 
this further, let us review the essence of 
Landau's strategy. His starting point is the 
proper identification of the quantum "coher- 
ence" or order in the ground state of the 
system. In the theory of metals, the order is 
that implied by the distribution in the occu- 
pation number of plane wave states of elec- 
trons-the plane waves with small wavevec- 
tors are fully occupied, but there is an abrupt 
decrease in the average occupation number 
above a certain "Fermi wavevector"; in the 
superfluid state of 4He, the order in the 
ground state is the presence of the Bose- 
Einstein condensate-the macroscopic occu- 
pation of 4He atoms in the ground state. 
Landau then proceeds to describe the low- 
energy excited states, and hence the finite 
temperature properties, by identifying ele-
mentary excitations that perturb the order of 
the ground state in a fundamental way. These 
excitations can be thought of as new, emer- 
gent particles (or "quasiparticles") that trans- 
port spin, charge, momentum, and energy, 
and whose mutual collisions are described by 
a Boltzmann-like transport equation. In met- 
als, the quasiparticles are electrons and holes 
in the vicinity of the Fermi wavevector, 
whereas in 4He they are phonon and roton 
excitations. 

The systems I shall consider here are del- 
icately poised between two or more distinct 
states with very different quantum ordering 
properties and low-lying excitations. The en- 
ergies of the states are quite close to each 
other, and only at very low temperatures is a 
particular one picked as the ground state-at 
these temperatures, Landau's quasiparticle 
approach can apply. However, for somewhat 
different parameters, it is possible that a dif- 
ferent $ate will be picked as ground state, 
and again, Landau's quasiparticle approach 
will apply at very low temperatures: a crucial 
point is that the nature and physical proper- 

ties of these quasiparticles will, in general, be 
very different from the previous ones. At 
slightly higher temperatures, it is impossible 
to ignore the competition between the differ- 
ent states and their respective quasiparticles: 
the simple quasiparticle picture breaks down, 
and very complex behavior can result which 
is not characteristic of any one of the possible 
ground states. 

I describe this intricate temperature de- 
pendence by the following strategy. Imagine 
following the true ground state of the system 
as a function of some parameter in the Ham- 
iltonian, g. It should be possible to find a 
critical value g = g, such that the ground 
state undergoes a quantum phase transition 
(2, 3) from one possible state for g < gc to 
another, with distinct quantum order, for g > 
g,. I first develop a theory for the ground 
state for the quantum critical point precisely 
at g = g,. In general, this is a difficult task, 
but for "second-order" quantum transitions, 
the critical point has special symmetry prop- 
erties that often allows significant progress; we 
will see examples of this below. Empowered 
with this knowledge of the physics at inter- 
mediate coupling, I move away from the 
critical point and map out the physics for 
nonzero Ig - g, and temperature. It should 
be emphasized that it is often the case that the 
point g = g, is in a regime that cannot be 
experimentally accessed; however, this does 
not rule out application of my strategy-it is 
still useful to describe the physics at the 
inaccessible point g = g,, and then use it as a 
point of departure to develop a systematic 
and controlled theory for an accessible value 
of g. 

This discussion has so far been rather 
abstract; we will now spell out concrete de- 
tails by considering a number of examples of 
increasing complexity and discussing their 
relationship to experimental observations. 

lsing Chain i n  a Transverse Field 
This is the simplest theoretical model of a 
quantum phase transition, and many key con- 
cepts emerge from its study (3): It Is de- 
scribed by the Hamiltonian ( J  > 0, g > 0) 

HJ = - J 2 (gh; + &f&J+,) (1)  
I 


Here, c?;,' are Pauli matrices that measure the 
x,z components of the electron spin on a 
magnetic ion in an insulator. The ions reside 
on the sites j of a 1D chain. Each site has two 
possible states / ? ), and 1 J, which are ei- 
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genstates of 15; with eigenvalues + 1 and - 1, 
and thus identify the electron spin on site j as 
"up" or "down." The two terms in HI repre- 
sent different physical effects: the second 
term prefers that the spins on neighboring 
ions are parallel to each other, whereas the 
first allows quantum tunneling between the 
I )j and I & )j states with amplitude propor- 
tional to g. 

able states in the Hilbert space. The distinc- 
tion extends also to the excited states: we 
define a left-pointing spin by the analog of 
(2), I+)j = (I T ). - I 4 ) j ) l f i ,  and the qua- 
siparticle states, (@), now represent a single 
"left"-pointing spin at site j in a background 
of "right" spins (see Fig. l), rather than a 
domain wall. For g = a ~ ,  these states are 
stationary, but for g < m, the quasiparticles 

its inverse by a low-frequency expansion (3) 
@,(holk,T) = A(l - iolr,  + . . . ) - I ;  here, 
A is a dimensionless prefactor, and we have 
the important result that r, = [2 tan (a1 
16)]kBTlfi. This is the response of an over- 
damped oscillator with a relaxation rate de- 
termined orlly by temperature itself (6). Al- 
though a quasiparticle description of this re- 
sponse function is strictly not possible, we 

For g->> 1 and for g << 1, the ground develop dynamics; a theory for this dynamics can visualize the dynamics in terms of a 
states of H, are simple, and the quasiparticle can again be formulated in the spirit of dense gas of the IQ,) particles scattering off 
picture does describk the low T dynamics (4). Landau, and this describes relaxation phe- each other at a rate 'of order k,Tlfi; however, 
For g << 1, we can neglect the quantum nomena at low T. a picture in terms of the "dual" lei) particles 
tunneling and the ground state either has all We now allow competition between the would also be valid. It is quite ;emarkable 
spins up or all spins down. The order in this distinct orders at small and large g by con- that the strength of the underlying exchange 
state i s  evident: all the spins are parallel to sidering values of g of order unity. Consider interaction between the spins does not appear 
each other. The quasiparticles are domain first T = 0. It is known that there is a in these fundamental dynamic scales. 
walls that perturb this order. A quasiparticle 
state, IQ,), between sites j and j + 1 has the 
following wavefunction: all spins at and to 
the left (right) of site j ( j  + 1) are up (down) 
(see Fig. 1). For g = 0, every such spin 
configuration is an energy eigenstate and 
therefore stationary; for small but finite g, the 
domain walls become mobile (and acquire 
zero point motion). A theory for the quantum 
kinetics of these particles, describing their 
collisions, lifetime, and the relaxation of the 

quantum phase transition between these 
states at g = gc = 1, i.e., the ground state 
qualitatively similar to the g = 0 ground state 
for all g < 1, while a state like the g = a~ 
ground state is favored for g > 1. The ground 
state precisely at g = gc is very special: it 
cannot be characterized by any such simple 
cartoon pictures. Its fundamental property is 
one of scale invariance, as is apparent from 
the ground state correlation function (5) 

1 

We can use these above results to sketch a 
crossover phase diagram in the g,T plane. 
This is shown in Fig. 1. Note that "quantum 
criticality," characterized by responses like 
Eq. 5, holds over a range of values of g at 
nonzero temperature (7). 

It can be shown that the physics of the 
quantum Ising model in spatial dimension 
d = 2 is very similar; quantum criticality is 
again characterized by Eq. 5 (but the expo- 
nent 714 is replaced by a different universal 

magnetic order, can be developed following (kjI5:) - - 1 j - kill4 for large I j - kl (3) numerical value). Similar behavior applies 
Landau's general strategy. In the opposite also to quantum transitions in d = 3 systems 
limit, g >> 1, we see from Eq. 1 that the This power-law decay has the property that with quenched disorder (8). However, for the 
ground state can be built out of eigenstates of the functional form of the correlation is only analog of H, in d = 3 (and for all d > 3), the 
6; with eigenvalue + 1: these are 

or a "right3'-pointing spin, which quantum 
mechanically is just a linear superposition of 
up and down spins. The ground state has all 
spins pointing to the right, and it is evident 
that such a state is very different from the g = 
0 ground state, because the two states form 
distinct quantum superpositions of the avail- 

modified by an overall prefactor if we stretch 
the length scale (i.e., perform a scale trans- 
formation) at which we are observing the 
spins. In other words, it is not possible to tell 
by an examination of the ground state wave- 
function how far apart any pair of well-sep- 
arated spins are. At T > 0, a new time scale 
does appear, namely filk,T, and a fundamen- 
tal property of the quantum critical point of 
HI is that this time scale (involving nothing 
but the temperature and fundamental con- 
stants of nature) universally determines the 
relaxation rate for spin fluctuations. This is 

physics of the quantum phase transition is 
very different (3)-the kinetic theory of the 
analog of the 10,) quasiparticles applies even 
at the critical point, and their scattering cross- 
section depends on the magnitude of the mi- 
croscopic interactions. Quantum transitions 
in this class have been studied elsewhere and 
have important physical applications (9-11): 
our discussion of quantum criticality will not 
apply to them. 

Coupled Ladder Antiferrornagnet 
We turn to a model in d = 2 that is indirectly 

Quantum 
odtical , 

Domain-+ 
quasiparticle A 

made more precise by  examining the zero- related to microscopic models of the high 
momentum dynamic response function temperature superconductors. We consider 

the antiferromagnet described by the Hamil- 
tonian (12) (J > 0, 0 < g 5 1) 

&i(0)])eiwl (4) 
k HL = J x Si . Sj + gJ Si . Sj (6) 

where &;(t) is an operator at time t in the i.jEA i j € B  

Heisenberg picture, and [,I represents a quan- where Si are spin- 112 operators on the sites of 
tum commutator. The arguments above and the coupled-ladder lattice shown in Fig. 2, 
simple dimensional considerations following with the A links forming "two-leg ladders" 
from Eq. 3 imply that for low temperatures x while the B links couple the ladders. There is 
obeys a quantum phase transition in H, at a critical 

Fig. 1. Phase diagram of H,. The quantum phase x(w) - T-'"@,(fiolkBT) (5) value g = gc - 0.3 that is similar in many 
transition is at g = g,, T = 0, and the dashed respects to that in HI. 
red line indicates a crossover. Quasiparticle dy- with @, a universal response function; if, for I begin by describing the well-ordered 
namics applies in the blue shaded regi0ns: for example, we added a small second neighbor ground states on either side of g, and their 
< gc' the quasipanicle states are like the IQj) coupling to H,, the critical coupling gc would respective, low-T quasiparticle theories. states, whereas-for g > gc, they are like the 

very different IQ~)  states. ~h~ quantum critical shift slightly but @ would remain exactly the For g close to unity, there is the magnet- 
dynamics in the pink shaded region is charac- same. The exact result for @, is known, and it ically ordered "NCel" state in Fig. 2A. This is 
terized by Eq. 5. is an excellent approximation to just replace analogous to the ground state of HI for small 
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g, with the difference that the mean moment 
on the sites has a staggered sublattice ar- 
rangement. There is also an important differ- 
ence in the structure of the excitations, be- 
cause HL has the symmetry of arbitrary rota- 
tions in spin space, in contrast to the discrete 
spin inversion symmetry of HI. Consequent- 
ly, the low-lying quasiparticle excitations are 
spin waves corresponding to a slow preces- 
sion in the orientation of the staggered mag- 
netic order. The precession can be either 
clockwise or anticlockwise, and so there is 
twofold degeneracy to each spin-wave mode. 
Because of infrared singular scattering of 
thermally excited spin waves in d = 2, the 
theory of spin-wave dynamics has some sub- 
tleties (7, 13); nevertheless, the results remain 
within the spirit of the quasiparticle picture. 

For small g, the ground state is a quantum 
paramagnet, and a caricature is sketched in 
Fig. 2B. The average moment on each site 
has been completely quenched by the forma- 
tion of singlet bonds between neighboring 
spins. This state is similar in many respects to 
the large g ground state for H,. It requires a 
finite energy, A, to create quasiparticle exci- 
tations by locally disrupting the singlet order 
(the analog of flipping a spin for HI): the 
singlet bond between a pair of spins can be 
replaced by a triplet of total spin S = 1 states, 
and the motion of this broken bond corre- 
sponds to a threefold degenerate quasiparticle 
state (to be contrasted with the twofold de- 
generate spin wave above). A conventional 
quantum Boltzmann equation can be used to 
describe the low temperature dynamics of 
these triplet quasiparticles (3, 14). 

The crossover phase diagram in the g,T 
plane (7) is sketched in Fig. 3 following Fig. 
1 .  For g 5 g,, quantum criticality appears for 
A << kBT << J. Here, dynamic spin response 

functions have a structure very similar to that 
described near Eq. 5: the relaxation rate T, 
continues to be proportional to kBTlfi, but 
now only approximate results for the propor- 
tionality constant are available (3, 15). If the 
dynamics is described in the basis of the 
triplet quasiparticles, then these results imply 
that the scattering cross section is universally 
determined by the energy kBTalone (14). As 
we lower kBT across A (for g < g,), this 
scattering cross section evolves as a finction 
of the dimensionless ratio AlkBT alone, and 
for very low T is determined by A alone. One 
remarkable consequence of this universal 
cross section is that transport coefficients, 
like the spin conductance u,, (which deter- 
mines the spin current produced by the gra- 
dient in an applied magnetic field), are deter- 
mined by fundamental constants of nature 
(16) and the ratio AlkBT 

Here, g is the gyromagnetic ratio of the ions 
carrying the spin, IJ , ,  is the Bohr magneton, 
and a, is a universal function with no arbi- 
trariness in either its overall scale or in that of 
its argument. Note that, well into the quantum 
critical region, us is proportional to the uni- 
versal number @,(0), and so is determined by 
constants of nature alone. 

Although it is certainly not appropriate to 
take HL as a literal model for the high-tem- 
perature superconductors, it is notable (1 7) 
that many measurements of spin fluctuations 
in the last decade display crossovers that are 
very similar to those found in the vicinity of 
the quantum critical point in Fig. 3. I take this 
as evidence that the high-temperature super- 
conductors are near ,a quantum critical point 
whose spin sector has universal properties 

Fig. 2. The coupled ladder an- A 
tiferromagnet; the spin-1/2 de- 
grees of freedom, S, reside on 
the blue circles. The A links are 
the full red lines and have ex- 
change ], whereas the B links 
are dashed lines and have ex- 
change g ]. The Nee1 ground 
state for g > g, appears in (A). 
The paramagnetic ground state 
for g < g, is schematically in- 
dicated in (B). The ellipses in B 
(B) represents a singlet balence 
bond. (I 71)  - 117 ) ) / f i  
[shown in (C)], between the 
spins on the sites. 

closely related to that of HL (18): a specific 
microscopic calculation, involving competi- 
tion between the states to be discussed below, 
which realizes such a scenario was presented 
in (19). The evidence has appeared in the 
following experiments: (i) the dynamic spin 
structure factor measured in neutron scatter- 
ing experiments (20) at moderate temperature 
obeys scaling forms similar to Eq. 5; (ii) as I 
discuss in Fig. 4, crossovers in the nuclear 
spin relaxation rate (21, 24, 25) as a function 
of carrier density and temperature match very 
well with the spin dynamics of the different 
regimes in the g,T plane in Fig. 3;  (iii) low- 
temperature neutron scattering measurements 
(26) at higher carrier density show a resolu- 
tion-limited peak above a finite energy gap; 
this is a signal of the long-lived triplet qua- 
siparticles, like those found at low T for g < 
g, in HL; such a peak was argued early on 
(15) to be a generic property of the vicinity of 
a quantum critical point, like that in HL, 
proposed for the high-temperature supercon- 
ductors (18). A further test of quantum criti- 
cality in the spin fluctuations could be pro- 
vided by measurements of the spin conduc- 
tance and comparison with Eq. 7, but such 
experiments have not been feasible so far. 

Electronic Ground States in Two 
Dimensions 
I have so far discussed simple models of 
quantum phase transitions whose physics is 
now well understood. Here. I turn to more 
realistic models of the high-temperature su- 
perconductors. As I inentioned in the intro- 

Fig. 3. Crossover phase diagram for H, with the 
same conventions as Fig. 1. The ground state is 
a paramagnet (Fig. 28) for g < g,, and the 
energy cost to create a spin excitation, A, is 
finite for g < g, and vanishes as A - (g, - g)T", 
where zv is a critical exponent. There is mag- 
netic Nee1 order at T = 0 for g > g, (Fig. 24)- 
and the time-averaged moment on any site, No, 
vanishes as g approaches g, from above. Qua- 
siparticle-like dynamics applies in the blue- 
shaded regions. For g < g,, in the cartoon 
picture of the ground state in Fig. ZB, the triplet 
quasiparticle corresponds to the motion of bro- 
ken sin let bond in which Fig. 2C is replaced by 
one of777 ). I 11 ), or ( I  t i  ) + I it ))~fi. For 
g > g,, the quasiparticles are spin-waves rep- 
resenting slow, long-wavelength deformations 
of the ordered state in Fig. 2A. 
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duction, electronic motion in these materials 
occurs primarily in 2D CuO, layers. The Cu 
ions are located on the vertices of a square 
lattice, and it is widely believed that only the 
dynamics on a single 3d Cu orbital is rele- 
vant, with the occupation numbers of the 
other orbitals being inert. So we are led to 
consider a simple tight-binding model of 
electrons with a single orbital on every site of 
a square lattice, along with Coulomb interac- 
tions between the electrons. If the electron 
density is precisely unity per site, then the 
ground state is known to be an insulator with 
NCel order (this corresponds to the state in 
Fig. 2A at g = 1) for the range of parameters 
found in the stoichiometric compound 
La,Cu04. It is possible to vary the electron 
density in the square lattice by doping such a 
compound to La,-,SryCu04, and then x mea- 
sures the density of holes relative to the 
insulating state with one electron per site. 
High-temperature superconductivity is found 
for x greater than about 0.05. 

Much theoretical work in the last decade 
has addressed the physics of this square lat- 
tice model for small x. I will discuss various 
proposals for ground states, with an emphasis 
on finding sharp distinctions between them- 
i.e., distinguishing states that cannot be 
smoothly connected by the variation of a 
parameter in the Hamiltonian and that must 

be separated by a quantum phase transition. 
Often, the theoretical debate has been about 
different approximation schemes to comput- 
ing properties of states that are ultimately 
equivalent. I avoid such issues here; indeed, I 
advocate that a sound approach is to use a 
theory for quantum critical points, separating 
distinct ground states, to develop a controlled 
expansion at intermediate coupling. 

A minimal approach to identifying possi- 
ble ground states is to assume that they are 
fully characterized by broken symmetries of 
the underlying Hamiltonian-i.e., a simple 
electron mean-field theory of the broken 
symmetry properly identifies the elementary 
excitations (however, as discussed above, this 
does not rule out highly nontrivial quantum 
critical points whose excitations control the 
physics over a wide region of the phase dia- 
gram). The symmetries that leave the Hamil- 
tonian invariant (and so may be broken by the 
ground state) are time-reversal, the group of 
spin rotations, the space group of the square 
lattice, and the electromagnetic gauge sym- 
metry related to charge conservation. Even in 
this limited framework, the possibilities are 
remarkably rich, .and it is entirely possible 
that they will provide an explanation for all 

Fig. 4. Measurements (27) of the longitudinal 
nuclear spin relaxation ( l /T l )  of 63Cu nuclei in the 
high-temperature superconductor La,-,SrxCuO, 
as a function of x and T. This quantity is a 
measure of the spectral density of electron spin 
fluctuations at very low energies. At small x, 
l/Tl increases rapidly as T is lowered (red cir- 
cles). This is also the behavior in the spin-wave 
regime of Fig. 3 (g > g,): the energy of the 
dominant thermally excited spin-wave decreas- 
es rapidly as T decreases, and so the spin spec- 
tral density rises (22). In contrast, at large x, 
I IT ,  decreases as T is lowered (blue squares). 
This corresponds with the triplet quasiparticle 
regime of Fig. 3 (g < g,): the low-energy 
spectral density is proportional to the density 
of thermally excited quasiparticles, and this 
becomes exponentially small as T is lowered. 
Finally, at intermediate T, l /T l  is roughly tem- 
perature-independent for a wide range of T 
(orange triangles), and this is the predicted 
behavior (78, 23) in the quantum critical re- 
gime of Fig. 3. 

Fig. 5. Two examples (A and B) of square lattice 
ground state with Peierls order. All sites are 
equivalent, and distinct values of the energy 
and charge densities on the links are represent- 
ed by distinct colors. These distinctions repre- 
sent a spontaneous breaking of the symmetry 
of the square lattice space group. The sponta- 
neous ordering appears because it optimizes 
the energy gained by resonance between dif- 
ferent singlet bond pairings of near-neighbor 
spins. This figure should be contrasted with Fig. 
2, where there is no spontaneous breaking of 
translational symmetry, and the distinction be- 
tween the links is already present in the Ham- 
iltonian Eq. 6. 

the experiments. More exotic ground states 
have also been proposed, and I will note them 
briefly below. 

One important state has already made an 
appearance in the discussion above, and is 
known to be the ground state x = 0: the NCel 
state sketched in Fig. 2A. It is apparent by a 
glance at the staggered arrangement of spins 
in Fig. 2A that we can view this state as a 
density wave of spin polarization at the 
wavevector K = (.rrla,~la), where a is the 
square lattice spacing. For small x # 0, spin 
density waves with a period incommensurate 
with the underlying lattice have been ob- 
served (27): these states have a mean spin 
polarization at a wavevector K that varies 
continuously away from ( ~ / a , ~ / a ) .  

The other ground state of central impor- 
tance is, of course, the superconducting state. 
This is formed by Bose condensation of elec- 
trons in Cooper pairs, which leads to the 
breaking of the elctromagnetic gauge symme- 
try. It is known that the pair wavefunction has 
the symmetry of the ~,z- ,J  orbital in the 
relative coordinate of the two electrons. Re- 
cently, interest has focused on the question of 
whether the pair wavefunction is on the verge 
of acquiring an additional imaginary compo- 
nent with d,, (or possibly s) symmetry: such 
an instability would also break time-reversal 
symmetry (28-31). It has been argued (31) 
that the quantum phase transition between 
two such superconductors could very natural- 
ly explain the quantum criticality, similar to 
the scaling form (3, observed in recent pho- 
toemission experiments (32). 

A state that makes a frequent appearance 
in theoretical studies is one with "Peierls" 
order. In models with half-integral spin per 
unit cell, such order was argued (33) to be a 
generic property of any state reached by a 
continuous quantum transition that restores 
the broken spin rotation symmetry of a NCel 
state. The Peierls order is associated with 
broken translational symmetries, and exam- 
ples are shown in Fig. 5: in these states all 
sites of the square lattice are equivalent, but 
links connecting nearest neighbor sites spon- 
taneously can acquire distinct values for their 
charge and energy densities (and therefore, 
for the mean value of the exchange cou- 
pling (Si Sj)). I also considered a quantum 
transition restoring spin rotation symmetry 
previously in the text, and mentioned its rel- 
evance to the NMR measurements in Fig. 4; 
however, the issue of spontaneous Peierls 
ordering did not arise there because the links 
were already explicitly inequivalent in the 
Hamiltonian H ,  in Eq. 6.  It is believed (15, 
33, 34) that the universal spin fluctuation 
properties in the vicinity of the quantum crit- 
ical point discussed above apply also to cases 
where spontaneous Peierls order appears in 
the paramagnetic state. Evidence for the 
spontaneous Peierls ordering in Fig. 5A has 

21 APRIL 2000 VOL 288 SCIENCE www.sciencemag.org 



C O R R E L A T E D  E L E C T R O N  S Y S T E M S  - 
emerged in numerical studies (35, 36) of 
square lattice models at x = 0 and with first- 

adds to the menagerie of possibilities. Future 
experiments with increased sensitivity should 
make it possible to more clearly detect more 
of these orderings, and thus select between 
various scenarios. 

scattering cross section (26), arising from the 
triplet quasiparticles discussed above. Further 
interesting developments are sure to follow. and second-neighbor hopping of electrons, 

and also in nearest-neighbor hopping models 
for x > 0 (37). 

A com~etitor state to Peierls order for the 
Conclusion 
Correlated electron systems in two dimen- 
sions are in a privileged position. Those in 
three dimensions either form good Fermi liq- 
uids or ordered states with order parameters 
like those discussed above: in the latter case, 
quantum fluctuations of the order parameter 
are weak and do not lead any unusual non- 
quasiparticle behavior, even at zero tempera- 
ture phase transitions (11). In contrast, in one 
dimension, quantum fluctuations of the order 
parameters are so strong that they usually 
preclude the emergence of long-range order, 
and so quantum phase transitions are harder 
to find. It is in two dimensions that there is a 
delicate balance between order and fluctua- 
tion, and a host of interesting quantum criti- 
cal points, with nontrivial universal proper- 
ties, can appear between different competing 
orders. I have considered some simple exam- 
ples of the dynamical properties of systems 
near such a point. The phases on either side of 
the critical point are usually amenable to a 
quasiparticle description at low enough tem- 
peratures. However, a key point is that the 
quasiparticle states are very different for the 
two phases, so at slightly higher temperatures 

Spin-Charge Separation 
Finally, we discuss more exotic possibilities 
of states that cannot be completely character- 
ized by ordering discussed above. Of partic- 
ular interest has been the early proposal of 
Anderson and others (49, 50) that there could 
be an insulating state with spin-charge sepa- 
ration; i.e., the electron falls apart ("fraction- 
alizes") into separate deconfined excitations 
(51, 52) that cany its spin and charge. A 
fundamental property of these deconfined 
phases is that superconducting states in their 
vicinity allow low-energy vortex excitations 
with quantized magnetic flux equal to hcle 
(53-55): the elementary flux quantum is al- 
ways hc/2e, but it can be argued quite gener- 
ally that core energy of a hcle vortex is lower 
than twice that of a hcl2e vortex. The kinetic 
energy of the superflow well away from the 
vortex core always prefers the smaller flux 
hc/2e, and so requiring global stability for 
hcle vortices becomes a delicate question of 
balancing core and superflow contributions 
(53). Nevertheless, it is possible, in principle, 
that a magnetic flux decoration, flux noise, 
tunneling, or other experiment could observe 
metastable or stable hcle vortices or vortex- 
antivortex pairs: this would be a "smoking- 
gun" signal for deconfinement. 

Another important class of experiments 
(56) measures the response to nonmagnetic 
impurities, such as Zn or Li, and these could 
also provide clear-cut answers on the nature 
of the order parameter and on issues of con- 
finement. These impurities substitute on the 
Cu site and so are directly within the plane of 
the 2D electron gas. Such deformations are 
very effective in disrupting the quantum co- 

quantum paramagnet is the "orbital antiferro- 
magnet" (38-40): this state breaks time-re- 
versa1 and translational symmetries, but spin 
rotation symmetry and the combination of 
time-reversal and translation by an odd num- 
ber of lattice spacings remains unbroken. 
There is a spontaneous flow of electrical 
currents around each plaquette of the square 
lattice, with clockwise and anticlockwise 
flows alternating in a checkerboard pattern 
(Fig. 6). Ivanov et al. (41) proposed that a 
closely related state (in their formulation, 
there are strong fluctuations of the orbital 
currents, but no true long-range order) is 
responsible for the "pseudo-gap" phenome- 
nology of the high-temperature superconduc- 
tors--the pseudo-gap is the partial quenching 
of low-energy spin and fennionic excitations 
at temperatures above the superconducting 
critical temperature (T,). 

For the final conventional state, I consider 
a charge density wave. Much recent experi- 
mental work has centered around the discov- 
ery of charge-ordering in certain high-tem- 
perature superconductors and related materi- 
als (42). An especially stable state, observed 
for x - 118, has a charge density wave at 
wavevector K = [1~1(2a),O]; depending upon 
its phase, the charge density wave can be 
either site-centered or bond-centered, as 
shown in Fig. 7. Current experiments do not 
distinguish between these two possibilities. 
Site-centered ordering was considered in 
some early theoretical work (43-43, al- 
though with a very different charge distribu- 
tion than is now observed. Bond-centered 
ordering was considered recently (19, 46, 
47), and has some attractive features: it en- 
hances singlet-bond formation between spins, 
optimizing the energy gained through quan- 

herence of the ground state and so serve as 
effective probes-of its structure. For example 
(57, 58), replacing only 0.5% of Cu by Zn 
dramatically broadens the peak in the neutron- 

tum fluctuations in an antiferromagnet, and 
so is preferred by the same effects that led to 
the Peierls ordering in Fig. 5. Also, bond- 
centering is naturally compatible with the 
observed coexistence of charge-ordering and 
superconductivity at lower temperatures (48), 
while site-centering is expected to lead to 
insulating behavior. Let me also mention that 
superposition of charge density waves with 
different noncollinear K can lead to an insu- 
lating Wigner crystal state; this could be a 
Wigner crystal of holes, or with an even 
number of particles per unit cell, a Wigner 
crystal of Cooper pairs (47). 

Clearly, a fascinating variety of phase di- 

Fig. 7. Charge density waves with (A) site- and 
(B) bond-centering; both states have a 4 X 1 
unit cell. The state in (A) is symmetric about 
reflections in a vertical axis running through the 
red or green sites, whereas that in (B) requires 
a vertical axis centered on the bond between 
two red sites or two green sites. The colors of 
the sites represent different charge densities. 
Spin ordering can also be present for an appro- 
priate K, but is not shown. Note that the bond- 
centered ordering naturally suggests an effec- 
tive model for the spin fluctuations much like 
the ladder model described in the text: the 
spins of Fig. 2 reside on the red sites of (B) 
(with no spins on the green sites) and the 
weaker gj exchange interactions (represented 
by the dashed lines in Fig. 2) extend across the 
green sites. 

agrams and quantum phase transitions are 
possible among the states I have discussed 

Fig. 6. The orbital antiferromagent. The gradi- 
ent in the red shading represents the direction 
of spontaneous current flow on the links, which 
breaks time-reversal symmetry. 

above. In principle, many of the order param- 
eters can coexist with each other, and this 
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when both phases can be thermally excited, 
neither quasiparticle description is appropri- 
ate. Instead, special scale-invariance proper- 
ties of the critical point have to be used to 
develop a new framework for finite temper- 
ature dynamics. 

The availability of a large number of 2D 
correlated electron systems (including the 
high-temperature superconductors), along 
with the highly nontrivial theoretical 
framework necessary to describe them, 
makes this one of the most exciting re-
search areas in condensed matter physics. 
As I have already noted, the increased sen- 
sitivity of future experiments, including 
neutron scattering, tunneling, magnetic res- 
onance, photoemission, and optics, along 
with better sample preparation techniques, 
will surely uncover much new physics. 
Many interesting theoretical questions, on 
the classification of ground states and 
quantum critical points, and on the descrip- 
tion of dynamical crossovers in their vicin- 
ity, remain open. The interplay between 
theory and experiment promises to be mu- 
tually beneficial, in the best traditions of 
physics research. 
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Sources of Quantum Protection in High-T, 

Superconductivity 


Philip W. Anderson 

The layer-structure cuprates with high superconducting transition tem-
peratures T, exhibit a number of anomalous electronic properties in both 
superconducting and normal states. These anomalies are ascribed to  the 
existence of independent spectra of excitations for charge and for spin, 
signaling a collective state, a "quantum protectorate." 

Laughlin and Pines ( I )  recently introduced 
the term "quantum protectorate" to describe 
certain states of quantum many-body systems 
with properties that are unaffected by imper- 
fections, impurities, and thermal fluctuations. 
Examples are the quantum Hall effect, which 
can be measured to extremely high accuracy 

Joseph Henry Laboratories of Physics, Princeton Uni- 
versity, Princeton. NJ 08544, USA. E-mail: pwa@pupgg. 
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on samples with very short mean free paths 
(comparable to the electron wavelength), and 
flux quantization in superconductors, which 
is independent of imperfections and scatter- 
ing. A simpler example is the rigidity and 
dimensional stability of crystalline solids 
evinced by scanning tunneling microscopy. 
The source of quantum protection is likely to 
be a collective state of the quantum field, in 
which the individual particles are sufficiently 
tightly coupled that elementary excitations no 

longer involve just a few particles, but are 
collective excitations of the whole system. As 
a result, macroscopic behavior is mostly de- 
termined by overall conservation laws. 

Here, I discuss experimental evidence 
which shows that the metallic states of high- 
transition temperature ( q )cuprate supercon- 
ductors are a quantum protectorate. I propose 
that this collective state involves the phenom- 
enon of charge-spin separation and give in- 
dications why such a state should be a quan- 
tum protectorate. 

Experimental Evidence 
We may define four regions of the generic 
cuprate phase diagram (Fig. 1): the "normal" 
metallic state near optimal doping, phase I. 
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