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Humans, but no other animal, make meaningful use of spoken language. What is 
unclear, however, is whether this capacity depends on a unique constellation of 
perceptual and neurobiological mechanisms or whether a subset of such mecha- 
nisms is shared with other organisms. To explore this problem, parallel experiments 
were conducted on human newborns and cotton-top tamarin monkeys to assess 
their ability to discriminate unfamiliar languages. A habituation-dishabituation 
procedure was used to show that human newborns and tamarins can discriminate 
sentences from Dutch and Japanese but not if the sentences are played backward. 
Moreover, the cues for discrimination are not present in backward speech. This 
suggests that the human newborns' tuning to certain properties of speech relies 
on general processes of the primate auditory system. 

A fundamental question in the study of language 
evolution and acquisition is the extent to which 
humans are innately endowed with specialized 
capacities to comprehend and produce speech. 
Theoretical arguments have been used to argue 
that language acquisition must be based on an 
innately specified language faculty ( I ,  2),  but 
the precise nature and extent of ths  "language 
organ" is mainly an empirical matter, which 
notably requires studies of human newborns as 
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well as nonhuman animals (3-5). With respect 
to studies of humans, we already know that 
newborns as young as 4 days old have the 
capacity to discriminate phonemes categorically 
(6) and perceive well-formed syllables as units 
(7-9); they are sensitive to the rhythm of speech, 
as shown in experiments in which newborns 
distinguish sentences from languages that have 
different rhythmic properties but not from lan- 
guages that share the same rhythmic structure 
(10, 11); however, newborns do not discrimi- 
nate languages when speech is played backward 
( lo ) ,  and neurophysiological studies suggest 
that both infants and adults process natural 
speech differently from backward speech (12, 
13). All these studies indicate that humans are 
born with capacities that facilitate language ac- 
quisition and that seem well attuned to the prop- 
erties of speech. Studies of nonhuman animals, 
however, show that some of these capacities 
may predate our hominid origins. For example, 
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insects, birds, nonprimate mammals, and pri- 
mates process their own, species-typical sounds 
in a categorical manner,-and s d i e  of these 
species perceive speech categorically (14-18). 

Our aim here is to extend the comparative 
study of speech perception in three directions. 
First, using the same design and the same ma- 
terial, we have conducted joint experiments on 
human newborns and on monkeys. Second, 
whereas most studies of nonhuman animal 
speech perception involve extensive training be- 
fore testing on a generalization task, our exper- 
imental approach-the habituation-dishabitua-
tion paradigm--involves no training and paral- 
lels the method used in studies of infant speech 
perception. Thus, conditions are met to appro- 
priately compare the two populations. Third, 
most studies of speech processing in animals 
involve tests of phonemic perception. Here, we 
extend the analysis to sentence perception, 
thereby setting up a much broader range of 
perceptual problems. 

Our experiments were run on human new- 
borns and cotton-top tamarin monkeys (Sagui-
nus oedipus oedipus). The stimuli consisted of 
20 sentences in Japanese and 20 sentences in 
Dutch uttered by four female native speakers of 
each language. Conditions in whch the two 
languages are pitted against one another were 
compared with conditions in whch speakers of 
the same language are contrasted. In addition, 
sentences within a session were played either 
forward or backward. To more readily control 
for prosodic features of the signal, we reran all 
conditions with synthesized exemplars of the 
original sentences. Synthesized sentences were 
created with the MBROLA diphone synthesizer 
(19). Phoneme duration and hdamental fre- 
quency were preserved, whereas the phonetic 
inventory was narrowed to only one phoneme 
per manner of articulation: all fricatives were 
synthesized as Is/, vowels as /a/, liquids as N, 
plosives as It/, nasals as In/, and glides as /j/. 
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Thus, each synthesized sentence preserved only 
the prosodlc characteristics of its natural coun- 
terpart while eliminating lexical and phonetic 
information (20). 

We tested newborns with the high-ampli- 
tude sucking procedure and a habituationldis- 
habituation design. Sentences were elicited by 
the newborns' s u c h g  on a pacifier. In the 
language change condition, newborns were ha- 
bituated to 10 sentences uttered by two speakers 
in one language and then switched to 10 sen- 
tences uttered by two different speakers in the 
other language. In the speaker change condi- 
tion, newborns were habituated to 10 sentences 
uttered by two speakers from one language and 
then switched to two different speakers in the 
same language. A significant increase in suck- 
ing after the language change, compared with 
the speaker change, is taken as evidence that 
newborns perceive a significant difference be- 
tween the two languages (21). 

We tested 32 newborns (22) on the natural 
language-forward experiment: 16 in the lan- 
guage change condition and 16 in the speaker 
change condition. Figure 1A shows that the two 
groups did not differ significantly and thus that 
newborns failed to discriminate the two lan- 
guages (F(,,,,, < 1) (23). This result appears to 
conflict with previous experimental work show- 
ing that newborns discriminate English and Jap- 

Time, min 

Fig. 1. Average number of high amplitude sucks per 
minute for babies in the control (speaker change, 
dotted lines) and experimental (speaker and lan- 
guage change, solid lines) groups. Minutes are num- 
bered from the time of change. Error bars represent 
t1 SEM. (A) Natural sentences played forward. (0) 
Same sentences synthesized. (C) Same sentences 
synthesized and played backward. 

anese. However, our experiment exposes new- 
borns to great speaker variability (four voices) 
(24), and this factor has previously been shown 
to impair the discrimination abilities of infants 
(25). If speaker variability is responsible for the 
absence of discrimination, then we would pre- 
dict successful discrimination with fewer speak- 
ers. To test for this possibility, we ran a second 
experiment using synthesized speech, thereby 
reducing the number of voices to one, that of the 
speech synthesizer (26). 

We tested 32 additional newborns (27) on 
the forward language and speaker discrimina- 
tion using the synthesized versions of the orig- 
inal sentences. Figure 1B shows that newborns 
in the language change condition increased 
their sucking significantly more during the 2 
min after the switch than newborns in the 
speaker change condition (F(,,,,, = 6.3, P = 

0.018). This indicates that, relying exclusively 
on prosodic cues, newborns discriminate sen- 
tences of Dutch from sentences of Japanese. 
Moreover, this result shows that the failure of 
newborns to discriminate in experiment 1A was 
probably due to speaker variability. 

To determine the specificity of the new-
borns' capacity to discriminate languages, we 
tested 32 more newborns with the same synthe- 
sized sentences played backward (28). Figure 
1C shows that newborns fail to discriminate 

Language Speaker Language Speaker 
Forward Backward 

Language Speaker Language Speaker 
Forward Backward 

Language Speaker Language Speaker 
Forward Backward 

Condition 

Fig. 2. Number of tamarins responding positively 
(white bars) and negatively (hatched bars) to  test 
sentence depending on condition: Language or 
speaker change, sentences played forward or 
backward. (A) Natural sentences. (B)Synthesized 
sentences. (C) Data from experiments 2A and 2B 
pooled together. * P  < 0.05. * * P  < 0.01. 

languages played backward (F(,,,,, < 1) (29). 
Moreover, the interaction between experiments 
1B and 1C (forward vs. backwards) is margin- 
ally significant (F(,,, ,, = 3.6, P = 0.06). The 
finding that newborns discriminate two nonna- 
tive languages played forward but not backward 
suggests that the newborns' language discrimi- 
nation capacity may depend on specific proper- 
ties of speech that are eliminated when the 
signal is played backward. However, before 
drawing such a conclusion, it is important to 
directly assess the speech specificity of this ca- 
pacity by testing it on another species. 

We tested cotton-top tamarins (n = 13) with 
the same stimulus set as the newborns. Instead 
of suclung rate, however, we used a head orien- 
tation response toward the loudspeaker. During 
the habituation phase, a tarnarin was presented 
with sentences uttered by two speakers in one 
language and then tested with a sentence uttered 
by a different speaker, either in the same lan- 
guage (speaker change condition) or in the other 
language (language change condition). Recol- 
ery of orientation toward the loudspeaker was 
interpreted as an indication that the tarnarin 
perceived a difference between the habituation 
and test stimuli (30). 

Experiment 2A involved natural sentences 
of Dutch and Japanese played either forward or 
backward (31). Figure 2A shows that 10 of 13 
tamarins (P < 0.05; binomial test) dishabituated 
in the language change condition, whereas only 
5 of 13 dishabituated to the speaker change (P= 

0.87). The difference between language and 
speaker change is significant (P < 0.05; x2 test). 
Thls result suggests that the tamarins discrirni- 
nated Dutch from Japanese regardless of speak- 
er variation. Surprisingly, such a pattern was not 
observed when the sentences were played back- 
ward: only 5 of 13 tamarins dishabituated to the 
backward language change (P = 0.87): this 
pattern is not significantly different from the 
speaker change condition (P > 0.2). These re- 
sults parallel those obtained with newborns on 
the synthetic stimuli. 

In experiment 2B, we tested the same tama- 
rins on both the speaker and the language con- 
ditions but with synthesized sentences. Figure 
2B shows that 10 of 13 tamarins dishabituated 
to the forward language change (P < 0.05). 
Although the number of subjects dishabituating 
to the speaker change failed to reach statistical 
significance (P = 0.29), the increased numbers 
in this condition led to a nonsignificant differ- 
ence between language and speaker change for 
the synthesized sentences (P > 0.3). For back- 
ward sentences, subjects failed to show a sta- 
tistically significant level of dishabituation to 
either the language or the speaker change (P = 
0.29 and P = 0.13). Experiment 2B suggests 
that the ability of tamarins to discriminate 
Dutch and Japanese is diminished when only 
prosodic cues are available. 

When the data from experiments 2A and 2B 
are pooled (Fig. 2C), the overall result is clear: 
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when sentences are played forward, tamarins 
significantly dishabituate to the language 
change (P = 0.005) but not to the speaker 
change (P = 0.58), and the difference between 
language and speaker change is significant (P< 
0.05). When sentences are played backward, no 
such effect is observed. This overall result par- 
allels that obtained with human newborns: both 
species discriminate sentences of Dutch and 
Japanese played forward but not backward. 

The pattern of our results suggests striking 
similarities as well as differences between the 
monkey and the human auditory systems. First, 
we have shown that tamarins, like human new- 
borns, are able to process not just isolated syl- 
lables but also whole strings of continuous 
speech and to extract enough information to 
dscriminate between Dutch and Japanese. Sec- 
ond, their ability to do so above and beyond 
speaker variability suggests that they are able to 
extract auditory equivalence classes-that is, to 
extract abstract linguistic invariants despite 
highly variable acoustic shapes (17, 32). Third, 
the fact that, like newborns, tamarins fail to 
discriminate when speech is played backward 
suggests that their language discrimination ca- 
pacity relies not on trivial low-level cues but 
rather on quite specific properties of speech. 
Because tamarins have not evolved to process 
speech, we infer in turn that at least some as- 
pects of human speech perception may have 
built upon preexisting sensitivities of the pri- 
mate auditory system. Finally, unlike newborns, 
tamarins fail to discriminate the language 
change more than the speaker change when 
speech is resynthesized. This leaves open the 
possibility that human newborns and tamarins 
may not be responding to exactly the same cues 
in the sentences: tamarins might be more sensi- 
tive to phonetic than to prosodic contrasts. 
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