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type TiO, boundary (I7) can be used to deter-
mine the pressure and temperature of  the rock in 
the diamond stability field. In the present case, 
the subduction limit is close to the graphite- 
diamond boundary, but it may be different in 
other cases because of different temperature 
conditions and the envelope shape of the rutile- 
a-PbO, phase boundary. The baddeleyitela- 
Pb0,-type TiO, boundary (22) could be a use- 
ful indicator of possible subduction to the tran-
sition zone of the mantle if baddeleyite-type 
TiO, can be preserved in a host of minerals with 
a high bulk modulus, such as diamond. 
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The Influence of Canadian 

Forest Fires on Pollutant 


Concentrations in the United 

States 


Gerhard Wotawal*l- and Michael TrainerZ 

High carbon monoxide (CO) concentrations from uncertain origins occurred 
episodically in  the southeastern United States during the summer of 1995. We 
show that these episodes were caused by large forest fires in Canada. Over a 
period of 2 weeks, these natural emissions increased CO concentrations in  the 
southeastern United States as well as along the eastern seaboard, a region with 
one of the world's highest rates of anthropogenic emissions. Within the forest 
fire plumes, there were also high concentrations of ozone, volatile organic 
compounds, and aerosols. These results suggest that the impact of boreal forest 
fire emissions on air quality in the mid-latitudes of the Northern Hemisphere, 
where anthropogenic pollutant sources have been considered predominant, 
needs t o  be reevaluated. 

Forest fires are known to be a major source 
of CO and other air pollutants on a global 
scale (I). Large forest fire plumes, how- 
ever, have been found mostly in tropical 
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regions and above the oceans (2, 3). A 
number of studies dealing with the influ- 
ence of fires in boreal forests on trace gas 
concentrations in high northern lati-
tudes were conducted as part of the NASA 
Arctic Boundary Layer Expeditions (4, 5). 
It was shown that summertime sub-Arctic 
haze events were primarily a result of forest 
fires ( 6 ) ,  that fires, together with strato-
spheric intrusions, contribute a major frac- 
tion of total oxidized nitrogen species 
(NO,,) in the remote sub-Arctic troposphere 
( 7 ) ,and that these fires provide a net source 
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of CO and volatile organic compounds 
(VOCs) into the mid-latitudes (8). Specific 
studies dealing with boreal forest fire emis- 
sions in northern Canada indicate that high 
CO emissions can be expected from high- 
intensity crown fires there (9). Recent mea- 
surements in Siberia also exhibited elevat- 
ed CO levels across a large area as a result 
of burning (1 0 , l l ) .  However, the influence 
of such fires on CO concentrations mea- 
sured at mid-latitude monitoring sites has 
not been quantified before. 

In the summer of 1995, a field measure- 
ment campaign (SOS95) was conducted in 
central Tennessee as part of the Southern 
Oxidants Study (12). During this campaign, 
episodes of high CO concentrations that 
could not be attributed to anthropogenic 
activity occurred simultaneously at all lev- 
el-I1 (13) ground sites. Using ground mea- 
surements, aircraft measurements, and 
model simulations, we show that these ep- 
isodes were caused by forest fires in Can- 
ada (14) before and during the campaign 
period and demonstrate how natural emis- 
sions from forest fires strongly influenced 
CO concentrations in the southeastern and 
eastern United States during a period of 2 
weeks. These plumes were transported 
across more than 3500 km. They also con- 
tained high concentrations of ozone (0,), 
VOCs, and aerosols. 

On the basis of CO measurements at 
four background stations in the SOS95 re- 
gion (15) and two background stations in 
the eastern United States (Id), we statisti- 
cally reconstructed CO source regions 
causing the measured variations. For this 
purpose, backward air trajectories ending at 
these stations were calculated (1 7) with the 
FLEXTRA trajectory model (18) based on 
meteorological analysis data contributed by 
the European Centre for Medium-Range 
Weather Forecasts (ECMWF) (19). A 
method of trajectory statistics (20); the re- 
distributed concentration field method (21), 
was applied on CO measurements and cor- 
responding trajectories. Besides the expect- 
ed anthropogenic CO source regions, our 
statistics indicated the existence of even 
stronger emission sources in northwestern 
Canada (see Fig. 1). This is unusual, be- 
cause previous studies showed that CO 
concentrations in the eastern United States 
are normally lower when trajectories arrive 
from the far northwest (22). The main fire 
spot during June 1995, located in the 
Northwest Territories (23), was well iden- 
tified by the statistics, together with other 
known fire locations (24). The results also 
indicate that CO emission strengths from 
forest fires exceeded those from anthropo- 
genic sources. 

Model simulations of CO transport from 
forest fires and from anthropogenic sources 

were performed by applying the particle 
diffusion model FLEXPART (25) to the 
ECMWF wind field analyses. Because of 
the long lifetime of CO, the simulations 
were carried out without considering chem- 
istry or deposition. The simulation period 
was 17 June to 13 July 1995 (26). For the 
simulation of CO transport from Canadian 
forest fires, five emission areas were iden- 
tified (27). To each of these regions, we 
attributed the area burned in the respective 
province (28) during the simulation period. 
CO emissions were assumed to be propor- 
tional to the burned area. A measurement- 
based estimate for the Northwest Territo- 
ries suggests a CO emission of 4250 + 425 
kg per ha of burned forest (9). On the basis 
of this estimate, we assumed an emission of 
4500 kg of CO per ha of forest. In total, 
about 1.2 X 1 O L O  kg of CO was assumed to 
be emitted from the forest fires in the given 
time period. For the simulation of transport 
from anthropogenic CO sources, we made 
use of an emission inventory for 1996 on a 
U.S. county basis (29). For Canada, we 
used an inventory with base year 1985 (30). 
In total, 0.65 X loL0 kg of CO were as- 
sumed to be emitted from anthropogenic 
sources during the simulation period, which 
imolies that the estimated total emissions 
from forest fires exceeded the estimated 
emissions from anthropogenic sources by a 
factor of two. In the model simulation, 
anthropogenic emissions were released be- 
tween the surface and 300 m, and forest fire 
emissions between 500 and 3000 m, both 
equally distributed between minimum and 
maximum emission height. The elevated 
emission heights for forest fire emissions 
were selected to account for both the buoy- 
ancy of the emitted gases and the convec- 
tion above the fire spots. Elevated effective 
emission heights from forest fires are doc- 

umented in literature (6, 31) 
During the SOS95 campaign, the model 

calculated three episodes of large forest fire 
CO plumes. The major plume was trans- 
ported behind a cold front on 1 July 1995 
(Fig. 2), covering large parts of the central 
and southeastern United States. According 
to the model, other CO plumes passed by 
the end of June and 7 to 10 July. These 
simulations were validated by comparing 
them with surface measurements in the 
SOS95 region and on the East Coast. For 
this comparison, a summertime background 
CO concentration of 70 parts per billion 
(ppb) (32, 33) was added to the modeled 
contributions from anthropogenic sources 
and from fires. 

As a result, it turned out that forest fire 
emissions are needed to explain the ob- 
served time series of CO. At Giles County, 
Tennessee, only 3% of the variance of the 
average afternoon (1 8 to 2 1 UTC) CO con- 
centrations can be explained by nonlocal 
anthropogenic influence, 74% by forest fire 
influence, and 90% by a combination of 
both sources (see Fig. 3). Similar results 
were also obtained for other SOS95 ground 
stations (Table 1). Looking at the afternoon 
CO concentrations at all sites together, 
transport from the forest fires explained 
between 52 and 74% of the variance of the 
afternoon CO concentrations. Long-range 
transport from anthropogenic sources ex- 
plained only 0 to 6% of the variance during 
this episode. Thus, it can be concluded that, 
besides some local influence not accounted 
for, measured CO concentrations at the 
SOS95 ground measurement locations were 
dominantly influenced by Canadian forest 
fires during these 2 weeks. 

Similar results showing the high influ- 
ence of forest fire emissions on CO mea- 
surements were obtained for four sites at 

Fig. 1. Emission field of 
CO (in ppb) as recon- 
structed by the trajec- 
tory statistics (redis- 
tributed concentration 
field method) during 
the summer of 1995. 
Measurement sites are 
indicated by triangles. 
Data from the Wve 
River (MD) and  hena an- 
doah (VA) stations are $ 
not included in this 
analysis. Regions with 6 
insufficient trajectory 
coverage are lefl blank. I 1 1- s;- - - 
The principle of the sta- 1w 1 m  lnm 11ow lww apw eow m sow WW 

tistik is ' to attribute 
measured pollutant con- 
centrations to grid cells 
crossed by the respec- 
tive trajekories. ~ f t e r -  

I I 

ward, an average, residence-time weighted concentration was computed for every cell. A high concen- 
tration value indicates the existence of a substantial source of the measured quantity within the cell. 
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the U.S. East Coast (Harvard Forest, MA; 
Arendtsville, PA; Wye River, MD; Shenan- 
doah, VA), although the situation was more 
difficult to interpret. Forest fire influence 
there was not confined to well-defined ep- 
isodes but persisted during much of the 
simulation period. Despite this, the percent- 
age of explained variance by long-range 
transport from the fires ranged between 52 
and 64% (Table 1) and again exceeded the 

percentage of variance explained by the 
simulation of transport from anthropogenic 
sources. The unexplained variance, coming 
probably from local influence, was higher 
at some of these sites. 

For the SOS95 region, we observed no 
pronounced bias between model simulation 
and measurements. This absence of bias pro- 
vides a strong confirmation of the large-scale 
validity of the Northwest Territory forest fire 

Table 1. Comparison between rnodeled and measured CO concentrations at different sites, with Cmeas 
being the average measured concentration, C,,, the average rnodeled concentration, C,,,,, the average 
measured afternoon (18 to  21 UTC) concentration, and C,,,,, the average modeled afternoon concen- 
tration (all in ppb). r, is the correlation coefficient of measured versus simulated daily afternoon 
concentrations only from anthropogenic sources, rf is that only from forest fires, and rb is that from both 
sources. The first four stations are 50595 sites; the others are NARSTO (North American Research 
Strategy for Atmospheric Ozone) sites near the East Coast. The investigation period was 25 June to  10 
July 1995. 

Giles County, TN 13 
Cove Mountain, TN 12 
Mammoth Cave, KY 15 
Land between the Lakes, KY 14 

Arendtsville, PA 8 
Haward Forest, MA 5 
Wye River, MD 8 
Shenandoah, VA 9 

SOS sites 
231 231 225 
219 235 223 
237 242 237 
230 241 226 

East Coast sites 
188 288 173 280 0.46 0.80 
174 207 170 225 0.71 0.72 
172 225 173 186 0.41 0.79 
219 283 204 261 -0.25 0.73 

Fig. 2. Calculated CO 
concentrations (in ppb) 
f rom anthropogenic 
emissions (top) and 
from forest fires (bot- 
tom) for 1 July 1995, 
18 UTC. Forest fire 
release locations are 
marked wi th  black 
filled squares; the 
50595 Middle Ten- 
nessee study region is 
indicated by an open 
square. The anthropo- 
genic concentrations 
are high ahead of a 
cold front crossing the 
southeastern and east- 
ern United States, 
whereas forest fire 
concentrations are high 
behind the cold front. 
ACL, above ground 
level. 

emission measurements (9). The model sim- 
ulation, however, showed an overestimate of 
33% at the four East Coast sites. But this bias 
could not be attributed to the forest fire sim- 
ulation (34). 

No high correlation coefficient between 
measured 0, surface concentrations and 
calculated forest fire CO concentrations 
was found. Forest fire CO plumes were 
transported behind cold fronts, and the low- 
er temperatures and the faster dilution of 
anthropogenic pollutants normally do not 
provide an environment favorable for local 
or regional photochemical 0, production. 
However, the correlation between daily av- 
erage 0, and forest fire CO concentrations 
amounted to 0.46 (Giles County) and was 
significantly different from zero. Regional 
background 0, concentrations were elevat- 
ed by 10 to 20 ppb (13) on the two SOS95 
intensive observation days (2 and 8 July) 
within the major forest fire episodes, com- 
pared with other days. 

Forest fires changed the photochemical 
property of the air mass, as measured by the 
ratios of 0, to NOy and 0, to CO. Mea- 
surements in Giles County showed that the 
correlation coefficient between 0, and NO,, 
concentrations decreased from 0.91 to 0.67, 
the ozone production efficiency (slope of 
the regression line) dropped from 6.5 to 3.7 
on days with strong forest fire influence, 
and the slope of 0, versus CO dropped 
from 0.20 to 0.05. The first value is typical 
for summertime conditions in North Amer- 
ica (35); the second can be explained by a 
combination of 0, deposition during the 
transport toward the station and lower NO, 
to CO emission ratios in the fires, consis- 
tent with results from previous studies (7, 
36, 37). 

From the SOS95 aircraft measurements 
as well as from model simulations, a lot can 
be learned about the properties of the bo- 
real forest fire plumes reaching the mid- 
latitudes. These plumes are transported be- 
hind cold fronts within subsiding air mass- 
es. The transport height decreases with in- 
creasing transport time. During the flights, 
the influence of forest fire plumes could be 
detected between the surface and 3000 m 
above the ground, whereas studies in the 
sub-Arctic region identified plumes in 
heights up to 4500 m. Although forest fire 
plumes were always well defined with re- 
spect to CO, they gradually lost their defi- 
nition with respect to 0, after being inte- 
grated in the boundary iayer (dry deposi- 
tion). The amount of 0, being transported 
from these plumes directly toward surface 
measurement sites thus depended on when 
and where these plumes reached the 
ground. Elevated plumes were always 
marked by enhanced 0, concentrations. For 
instance, the elevated plume encountered 
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during the flight on 10 July above Indi- 
ana and Illinois showed 0, values of 80 to 
100 ppb over a tropospheric background of 
50 ppb (Fig. 4). The observed 0, versus 
CO ratio (0.11) suggests, well in accor- 
dance with other studies (36, 37), a reduced 
0, enhancement with respect to CO with- 
in forest fire plumes, compared with 
plumes from cities. However, fire plumes 
provide an enhanced background on which 
local-scale as well as regional-scale anthro- 
pogenic 0, episodes can build up. Photo- 
chemical model simulations indicate that 
excess 0, concentrations of tens of ppb can 
be expected over the eastern and south- 
eastern United States as a result of the 
forest fires. In addition to the 0, enhance- 
ment, aircraft measurements showed in- 
creased concentrations of VOCs and partic- 
ulate matter within these plumes. 

Using the emission estimate confirmed 
by our model results and combining it 
with the Canadian forest fire statistics (28), 
the contribution of Canadian forest fire 
CO emissions can be compared with the 
CO emissions of the United States (29), 
amounting to about 8.15 X l o L 0  kglyear. 
On the basis of the forest area burned in 
Canada annually on the 10-year average 
(3 X lo6 ha), we estimate that these sources 
amount to 17% of the U.S. CO emis- 
sions. In 1995, the forest fire CO emis- 
sions in Canada amounted to 36% of the 

Fig. 3. Hourly values of 
measured CO (dashed 
line) and simulated CO 
(solid line) concentra- 
tions (in ppb) from 
anthropogenic sourc- 
es (top), from forest 
fires (middle), and from 
both sources plus back- 
ground (bottom) at sta- 
tion Ciles County, Ten- 
nessee. The background 
concentration was taken 
as 70 ppb. 

total U.S. emissions annually and to 280% 
during June 1995. Emission estimates of 
total nonmethane volatile organic com- 
pounds (NMVOC) emitted by Canadian 
forest fires (9) suggest that the contribu- 
tions of Canadian forest fires to NMVOC 
concentrations in the southeastern and east- 
ern United States during the summer of 
1995 should have also been substan- 
tial. With these results, we extend the con- 
clusion already drawn in a previous study 
(8). Boreal forest fires provide a substan- 
tial source of CO (and presumably also 
VOCs) into the mid-latitudes. Episodically, 
CO emissions from boreal fires are the 
dominant source of regional levels of CO 
for the eastern and southeastern United 
States, one of the highest emission regions 
worldwide. 

The SOS95 measurements together with 
first photochemical model results indi- 
cate that forest fires influenced the build- 
up of ozone episodes in the southeastern 
United States by increasing background air 
pollution after passages of cold fronts that 
normally would clean the atmosphere. High 
0, concentrations were observed within 
these large plumes. Enhanced 0, con- 
centrations from the 1995 Canadian for- 
est fires were also reported from a loca- 
tion closer to one fire spot (38). We there- 
fore have to wonder whether tropospheric 
ozone pollution in the United States and 
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elsewhere in the midlatitudes is, at least 
episodically, more influenced by these nat- 
ural sources than currently believed and 
whether ozone reduction scenario calcula- 
tions should account for these additional 
sources in the future. 

These results are also relevant in the 
context of climate change. The number of 
forest fires in Canada has increased from 
6000 annually during the 1930-1960 peri- 
od to 10,000 in the 1980s (39). The area 
burned increased correspondingly. Al- 
though most of the Canadian fires can be 
attributed to human activity, 85% of the 
area burned is caused by lightning (39). 
The subsequent transport of forest fire 
plumes toward the United States is not 
uncommon. A recent study demonstrated 
close links between circulation anomalies 
in the midtroposphere and area burned in 
Canada (40). It was shown that in years 
such as 1995 with high forest fire activity 
in the west-central regions of Canada, there 
was typically a persistent high-pressure 
system located above northwestern Canada 
and the northern Pacific and a low-pressure 
system above northeastern Canada. Be- 
tween these systems, transport of Canadian 
forest fire emissions toward the United 
States can take place. Situations similar to 
the 1995 case were observed in 1981, 1989, 
and 1994 (40). 

, 
C0110 4 

0 I I I I 

0 20 40 80 00 100 

CO. ozone (ppbv) 

Fig. 4. Vertical distribution of CO (in ppb) and 
0, (in ppb) as measured by the aircraft on the 
afternoon of 10 July above the border between 
Indiana and Illinois (between 87" and 88"W 
along 39.7"N). The forest fire plume is marked 
by increased CO as well as by increased ozone 
concentrations. The aircraft probed the haze 
layer three times in a time span of 15 min, 
covering a distance of 55 km. The vertical ex- 
tent of the layer varied somehow along this 
flight leg. The data for the 0, to CO correlation 
and slope calculation are vertically restricted 
below 2600 m (red points in the scatter dia- 
gram) to avoid introducing an 0, peak at 3 km 
of probably stratospheric origin (black points). 
All data represent I S  averages smoothed over 
I 1  s. 
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